Suppr超能文献

基于标志物的肝细胞癌亚型分析用于鉴定免疫相关基因分类器,以预测预后、治疗效果和药物候选物。

Hallmark-guided subtypes of hepatocellular carcinoma for the identification of immune-related gene classifiers in the prediction of prognosis, treatment efficacy, and drug candidates.

机构信息

Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

出版信息

Front Immunol. 2022 Aug 10;13:958161. doi: 10.3389/fimmu.2022.958161. eCollection 2022.

Abstract

Hepatocellular carcinoma (HCC), accounting for ~90% of all primary liver cancer, is a prevalent malignancy worldwide. The intratumor heterogeneity of its causative etiology, histology, molecular landscape, and immune phenotype makes it difficult to precisely recognize individuals with high mortality risk or tumor-intrinsic treatment resistance, especially immunotherapy. Herein, we comprehensively evaluated the activities of cancer hallmark gene sets and their correlations with the prognosis of HCC patients using gene set variation analysis (GSVA) and identified two HCC subtypes with distinct prognostic outcomes. Based on these subtypes, seven immune-related genes (TMPRSS6, SPP1, S100A9, EPO, BIRC5, PLXNA1, and CDK4) were used to construct a novel prognostic gene signature [hallmark-guided subtypes-based immunologic signature (HGSIS)] multiple statistical approaches. The HGSIS-integrated nomogram suggested an enhanced predictive performance. Interestingly, oncogenic hallmark pathways were significantly enriched in the high-risk group and positively associated with the risk score. Distinct mutational landscapes and immune profiles were observed between different risk groups. Moreover, immunophenoscore (IPS) and tumor immune dysfunction and exclusion (TIDE) analysis showed different sensitivities of HGSIS risk groups for immune therapy efficacy, and the pRRophetic algorithm indicated distinguishable responses for targeted/chemotherapies in different groups. KIF2C was picked out as the key target concerning HGSIS, and the top 10 small molecules were predicted to bind to the active site of KIF2C molecular docking, which might be further used for candidate drug discovery of HCC. Taken together, our study offers novel insights for clinically significant subtype recognition, and the proposed signature may be a helpful guide for clinicians to improve the treatment regimens.

摘要

肝细胞癌(HCC)占所有原发性肝癌的 90%左右,是一种全球流行的恶性肿瘤。其病因学、组织学、分子景观和免疫表型的肿瘤内异质性使得难以准确识别高死亡率或肿瘤内在治疗抵抗的个体,特别是免疫治疗。在此,我们使用基因集变异分析(GSVA)全面评估了癌症标志性基因集的活性及其与 HCC 患者预后的相关性,并确定了两种具有不同预后结局的 HCC 亚型。基于这些亚型,使用七种免疫相关基因(TMPRSS6、SPP1、S100A9、EPO、BIRC5、PLXNA1 和 CDK4)构建了一个新的预后基因特征[标志性指导的亚型免疫特征(HGSIS)],并通过多种统计方法进行验证。HGSIS 整合的列线图表明预测性能得到了提高。有趣的是,致癌标志性途径在高危组中显著富集,并与风险评分呈正相关。在不同的风险组之间观察到不同的突变景观和免疫特征。此外,免疫表型评分(IPS)和肿瘤免疫功能障碍和排除(TIDE)分析显示 HGSIS 风险组对免疫治疗疗效的敏感性不同,pRRophetic 算法表明不同组对靶向/化疗的反应存在差异。KIF2C 被选为与 HGSIS 相关的关键靶标,通过分子对接预测了前 10 种小分子与 KIF2C 活性位点的结合,这可能进一步用于 HCC 的候选药物发现。总之,我们的研究为临床上有意义的亚型识别提供了新的见解,所提出的特征可能有助于临床医生改善治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a08b/9399518/5e82056ea3d5/fimmu-13-958161-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验