Suppr超能文献

基于生物信息学的扩张型心肌病相关基因筛查

Bioinformatics-based screening of genes associated with dilated cardiomyopathy.

作者信息

Liu Yanghua, Wu Qingshan, Mo Fangni, Mai Ye, Zhang Shengyuan, Wu Xiang

机构信息

Department of Laboratory Medicine, Hainan Hospital, Guangdong Provincial Hospital of Traditional Chinese Medicine, Haikou, China.

Critical Care Medicine, Hainan Hospital, Guangdong Provincial Hospital of Traditional Chinese Medicine, Haikou, China.

出版信息

J Thorac Dis. 2025 May 30;17(5):3357-3369. doi: 10.21037/jtd-2025-132. Epub 2025 May 28.

Abstract

BACKGROUND

Due to the lack of appropriate diagnostic biomarkers and intervention targets, the diagnosis and treatment of dilated cardiomyopathy (DCM) in clinical practice are considerably challenging. Therefore, this study aimed to identify reliable biomarker genes using bioinformatics methods to improve the clinical management of DCM.

METHODS

Three DCM gene datasets, GSE120895, GSE42955, and GSE3586, were downloaded from the Gene Expression Omnibus (GEO). Differential gene analysis was used to screen for differentially expressed genes in these datasets, and weighted gene coexpression network analysis (WGCNA) was used to screen for the gene coexpression modules most relevant to DCM. Machine learning algorithms and a Protein-protein interaction (PPI) network were used to screen for the core DCM genes in the gene coexpression module.

RESULTS

WGCNA identified the turquoise module as the most relevant gene module for DCM disease. Subsequently, machine learning algorithms identified 8 core genes while PPI screening identified 10 core genes. was found in both machine learning algorithms and PPI screening.

CONCLUSIONS

In this study, the gene was found to be a core gene in DCM, demonstrating the closest association with this disease. Further research on is expected to provide a target for the diagnosis and treatment of DCM.

摘要

背景

由于缺乏合适的诊断生物标志物和干预靶点,临床实践中扩张型心肌病(DCM)的诊断和治疗极具挑战性。因此,本研究旨在利用生物信息学方法鉴定可靠的生物标志物基因,以改善DCM的临床管理。

方法

从基因表达综合数据库(GEO)下载了三个DCM基因数据集,即GSE120895、GSE42955和GSE3586。使用差异基因分析在这些数据集中筛选差异表达基因,并使用加权基因共表达网络分析(WGCNA)筛选与DCM最相关的基因共表达模块。利用机器学习算法和蛋白质-蛋白质相互作用(PPI)网络在基因共表达模块中筛选核心DCM基因。

结果

WGCNA确定绿松石模块是与DCM疾病最相关的基因模块。随后,机器学习算法鉴定出8个核心基因,而PPI筛选鉴定出10个核心基因。在机器学习算法和PPI筛选中均发现了[具体基因名称未给出]。

结论

在本研究中,[具体基因名称未给出]基因被发现是DCM中的一个核心基因,表明与该疾病的关联最为密切。对[具体基因名称未给出]的进一步研究有望为DCM的诊断和治疗提供一个靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a7/12170022/5875e8fa74f0/jtd-17-05-3357-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验