Suppr超能文献

精神病理学脑源性维度框架

Framework for Brain-Derived Dimensions of Psychopathology.

作者信息

Lett Tristram A, Vaidya Nilakshi, Jia Tianye, Polemiti Elli, Banaschewski Tobias, Bokde Arun L W, Flor Herta, Grigis Antoine, Garavan Hugh, Gowland Penny, Heinz Andreas, Brühl Rüdiger, Martinot Jean-Luc, Paillère Martinot Marie-Laure, Artiges Eric, Nees Frauke, Papadopoulos Orfanos Dimitri, Lemaitre Herve, Paus Tomáš, Poustka Luise, Stringaris Argyris, Waller Lea, Zhang Zuo, Winterer Jeanne, Zhang Yuning, Smolka Michael N, Whelan Robert, Schmidt Ulrike, Sinclair Julia, Walter Henrik, Feng Jianfeng, Robbins Trevor W, Desrivières Sylvane, Marquand Andre, Schumann Gunter

机构信息

Centre for Population Neuroscience and Stratified Medicine, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.

Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China.

出版信息

JAMA Psychiatry. 2025 Jun 18. doi: 10.1001/jamapsychiatry.2025.1246.

Abstract

IMPORTANCE

Psychiatric diagnoses are not defined by neurobiological measures hindering the development of therapies targeting mechanisms underlying mental illness. Research confined to diagnostic boundaries yields heterogeneous biological results, whereas transdiagnostic studies often investigate individual symptoms in isolation.

OBJECTIVE

To develop a framework that groups clinical symptoms compatible with ICD-10 and DSM-5 according to their covariation and shared brain mechanisms.

DESIGN, SETTING, AND PARTICIPANTS: This diagnostic study was conducted in 2 samples, the population-based Reinforcement-Related Behaviour in Normal Brain Function and Psychopathology (IMAGEN) cohort (longitudinal assessments at 14, 19, and 23 years; study duration from March 2010 to the present) and the cross-diagnostic Brain Network Based Stratification of Mental Illness (STRATIFY)/Earlier Detection and Stratification of Eating Disorders and Comorbid Mental Illnesses (ESTRA) samples (study duration from October 2016 to September 2023). The samples are from 8 clinical research hospitals in Germany, the UK, France, and Ireland. For the population-based IMAGEN study, 794 of 1253 23-year-old participants had complete assessments including complete clinical assessments and neuroimaging data across all time points. For the cross-diagnostic STRATIFY/ESTRA samples, 209 of 485 participants aged 18 to 26 years had complete clinical and neuroimaging data. The sample included healthy control individuals and patients with alcohol use disorder, major depressive disorder, anorexia nervosa, and bulimia nervosa.

EXPOSURES

Sparse generalized canonical correlation analysis was used to integrate diverse data from clinical symptoms and 7 brain imaging modalities.

MAIN OUTCOMES AND MEASURES

The prediction of symptom features was the main outcome. The model was developed in the training set from the IMAGEN Study at age 23 years (70%), then applied in the remaining holdout test sample (30%), the independent STRATIFY/ESTRA patient sample, and longitudinally in the IMAGEN set.

RESULTS

In total, 1003 participants were included (425 male and 578 female; mean [SD] age, 22.1 [1.5] years). The reassembly of existing ICD-10 and DSM-5 symptoms revealed 6 cross-diagnostic psychopathology scores. They were consistently associated with multimodal neuroimaging components: excitability and impulsivity (training set: r, 0.26; 95% CI, 0.18-0.33; test set: r, 0.22; 95% CI, 0.10-0.35; STRATIFY/ESTRA set: r, 0.19; 95% CI, 0.07-0.31), depressive mood and distress (training: r, 0.30; 95% CI, 0.20-0.38; test: r, 0.22; 95% CI, 0.09-0.35; STRATIFY/ESTRA: r, 0.19; 95% CI, 0.04-0.33), emotional and behavioral dysregulation (training: r, 0.40; 95% CI, 0.31-0.48; test: r, 0.17; 95% CI, 0.14-0.36; STRATIFY/ESTRA: r, 0.19; 95% CI, 0.06-0.30), stress pathology (training: r, 0.32; 95% CI, 0.19-0.43; test: r, 0.14; 95% CI, 0.05-0.23; STRATIFY/ESTRA: r, 0.12; 95% CI, 0.01-0.22), eating pathology (training: r, 0.34; 95% CI, 0.25-0.42; test: r, 0.26; 95% CI, 0.15-0.37; STRATIFY/ESTRA: r, 0.15; 95% CI, 0.12-0.34), and social fear and avoidance symptoms (training: r, 0.31; 95% CI, 0.25-0.42; test: r, 0.18; 95% CI, 0.15-0.35; STRATIFY/ESTRA: r, 0.12; 95% CI, 0.12-0.33).

CONCLUSION AND RELEVANCE

In this study, the identification of symptom groups of mental illness robustly defined by precisely characterized brain mechanisms enabled the characterization of dimensions of psychopathology based on quantifiable neurobiological measures.

摘要

重要性

精神疾病的诊断并非由神经生物学指标来界定,这阻碍了针对精神疾病潜在机制的治疗方法的发展。局限于诊断界限的研究产生了异质性的生物学结果,而跨诊断研究往往孤立地调查个体症状。

目的

建立一个框架,根据临床症状的共变关系和共享的脑机制,将与《国际疾病分类第10版》(ICD - 10)和《精神疾病诊断与统计手册第5版》(DSM - 5)相符的临床症状进行分组。

设计、设置和参与者:这项诊断性研究在2个样本中进行,基于人群的正常脑功能和精神病理学中与强化相关行为(IMAGEN)队列(在14、19和23岁时进行纵向评估;研究时间从2010年3月至今)以及跨诊断的基于脑网络的精神疾病分层(STRATIFY)/饮食失调和共病精神疾病的早期检测与分层(ESTRA)样本(研究时间从2016年10月至2023年9月)。样本来自德国、英国、法国和爱尔兰的8家临床研究医院。对于基于人群的IMAGEN研究,1253名23岁参与者中有794人进行了完整评估,包括所有时间点的完整临床评估和神经影像学数据。对于跨诊断的STRATIFY/ESTRA样本,485名18至26岁参与者中有209人有完整的临床和神经影像学数据。样本包括健康对照个体以及患有酒精使用障碍、重度抑郁症、神经性厌食症和神经性贪食症的患者。

暴露因素

采用稀疏广义典型相关分析来整合来自临床症状和7种脑成像模式的多样数据。

主要结局和测量指标

症状特征的预测是主要结局。该模型在IMAGEN研究23岁时的训练集(70%)中开发,然后应用于其余的保留测试样本(30%)、独立的STRATIFY/ESTRA患者样本,并在IMAGEN集中进行纵向应用。

结果

总共纳入了1003名参与者(425名男性和578名女性;平均[标准差]年龄为22.1[1.5]岁)。对现有ICD - 10和DSM - 5症状的重新组合揭示了6个跨诊断精神病理学评分。它们与多模态神经影像学成分始终相关:兴奋性和冲动性(训练集:r = 0.26;95%置信区间,0.18 - 0.33;测试集:r = 0.22;95%置信区间,0.10 - 0.35;STRATIFY/ESTRA集:r = 0.19;95%置信区间,0.07 - 0.31),抑郁情绪和痛苦(训练:r = 0.30;95%置信区间,0.20 - 0.38;测试:r = 0.22;95%置信区间,0.09 - 0.35;STRATIFY/ESTRA:r = 0.19;95%置信区间,0.04 - 0.33),情绪和行为失调(训练:r = 0.40;95%置信区间,0.31 - 0.48;测试:r = 0.17;95%置信区间,0.14 - 0.36;STRATIFY/ESTRA:r = 0.19;95%置信区间,0.06 - 0.30),应激病理学(训练:r = 0.32;95%置信区间,0.19 - 0.43;测试:r = 0.14;95%置信区间,0.05 - 0.23;STRATIFY/ESTRA:r = 0.12;95%置信区间,0.01 - 0.22),饮食病理学(训练:r = 0.34;95%置信区间,0.25 - 0.42;测试:r = 0.26;95%置信区间,0.15 - 0.37;STRATIFY/ESTRA:r = 0.15;95%置信区间,0.12 - 0.34),以及社交恐惧和回避症状(训练:r = 0.31;95%置信区间,0.25 - 0.42;测试:r = 0.18;95%置信区间,0.15 - 0.35;STRATIFY/ESTRA:r = 0.12;95%置信区间,0.12 - 0.33)。

结论与意义

在本研究中,通过精确表征的脑机制强有力地界定了精神疾病症状组,从而能够基于可量化的神经生物学指标对精神病理学维度进行表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da2/12177734/5b25677c3b0f/jamapsychiatry-e251246-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验