Liu Xudong, Nie Zhiwei, Si Haorui, Shen Xurui, Liu Yutian, Huang Xiansong, Dong Tianyi, Xu Fan, Ren Zhixiang, Zhou Peng, Chen Jie
School of Electronic and Computer Engineering, Peking University, Shenzhen, China.
Pengcheng Laboratory, Shenzhen, China.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf276.
Predicting the mutation prevalence trends of emerging viruses in the real world is an efficient means to update vaccines or drugs in advance. It is crucial to develop a computational method for the prediction of real-world prevalent SARS-CoV-2 mutations considering the impact of multiple selective pressures within and between hosts. Here, a deep-learning generative framework for real-world prevalent SARS-CoV-2 mutation prediction, named ViralForesight, is developed on top of protein language models and in silico virus evolution. Through the paradigm of host-to-herd in silico virus evolution, ViralForesight reproduced previous real-world prevalent SARS-CoV-2 mutations for multiple lineages with superior performance. More importantly, ViralForesight correctly predicted the future prevalent mutations that dominated the COVID-19 pandemic in the real world more than half a year in advance with in vitro experimental validation. Overall, ViralForesight demonstrates a proactive approach to the prevention of emerging viral infections, accelerating the process of discovering future prevalent mutations with the power of generative deep learning.
预测现实世界中新兴病毒的突变流行趋势是提前更新疫苗或药物的有效手段。考虑到宿主内部和宿主之间多种选择压力的影响,开发一种用于预测现实世界中流行的SARS-CoV-2突变的计算方法至关重要。在此,基于蛋白质语言模型和计算机模拟病毒进化,开发了一种用于预测现实世界中流行的SARS-CoV-2突变的深度学习生成框架,名为ViralForesight。通过宿主到群体的计算机模拟病毒进化范式,ViralForesight以卓越的性能再现了多个谱系先前在现实世界中流行的SARS-CoV-2突变。更重要的是,ViralForesight通过体外实验验证,提前半年多正确预测了在现实世界中主导COVID-19大流行的未来流行突变。总体而言,ViralForesight展示了一种预防新兴病毒感染的积极方法,借助生成式深度学习的力量加速了发现未来流行突变的过程。