Suppr超能文献

具有可调生物物理特性的工程化纳米原纤维胶原,用于肌源性、内皮和成骨细胞的导向。

Engineered nanofibrillar collagen with tunable biophysical properties for myogenic, endothelial, and osteogenic cell guidance.

机构信息

Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.

Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.

出版信息

Acta Biomater. 2024 Sep 15;186:95-107. doi: 10.1016/j.actbio.2024.08.002. Epub 2024 Aug 6.

Abstract

A goal of regenerative engineering is the rational design of materials to restore the structure-function relationships that drive reparative programs in damaged tissues. Despite the widespread use of extracellular matrices for engineering tissues, their application has been limited by a narrow range of tunable features. The primary objective of this study is to develop a versatile platform for evaluating tissue-specific cellular interactions using Type I collagen scaffolds with highly tunable biophysical properties. The kinetics of collagen fibrillogenesis were modulated through a combination of varied shear rate and pH during neutralization, to achieve a broad range of fibril anisotropy, porosity, diameter, and storage modulus. The role that each of these properties play in guiding muscle, bone, and vascular cell types was comprehensively identified, and informed the in vitro generation of three distinct musculoskeletal engineered constructs. Myogenesis was highly regulated by smaller fibrils and larger storage moduli, endothelial inflammatory phenotype was predominantly guided by fibril anisotropy, and osteogenesis was enhanced by highly porous collagen with larger fibrils. This study introduces a novel approach for dynamically modulating Type I collagen materials and provides a robust platform for investigating cell-material interactions, offering insights for the future rational design of tissue-specific regenerative biomaterials. STATEMENT OF SIGNIFICANCE: The biophysical properties of regenerative materials facilitate key cell-substrate interactions that can guide the morphology, phenotype, and biological response of cells. In this study, we describe the fabrication of an engineered collagen hydrogel that can be modified to exhibit control over a wide range of biophysical features, including fibril organization and size, nanoscale porosity, and mechanics. We identified the unique combination of collagen features that optimally promote regenerative muscle, bone, and vascular cell types while also delineating the properties that hinder these same cellular responses. This study presents a highly accessible method to control the biophysical properties of collagen hydrogels that can be adapted for a broad range of tissue engineering and regenerative applications.

摘要

再生工程的目标是合理设计材料,以恢复驱动受损组织修复程序的结构-功能关系。尽管细胞外基质被广泛用于工程组织,但由于可调谐特征范围狭窄,其应用受到限制。本研究的主要目标是开发一种多功能平台,用于评估使用具有高度可调生物物理特性的 I 型胶原支架的组织特异性细胞相互作用。通过在中和过程中改变剪切速率和 pH 值来调节胶原原纤维的成核动力学,以实现广泛的纤维各向异性、孔隙率、直径和储能模量。全面确定了这些特性中的每一个在指导肌肉、骨骼和血管细胞类型中的作用,并为体外生成三种不同的肌肉骨骼工程构建体提供了信息。较小的纤维和较大的储能模量高度调节成肌作用,纤维各向异性主要指导内皮炎症表型,较大的纤维和较高的多孔胶原增强成骨作用。本研究介绍了一种动态调节 I 型胶原材料的新方法,并为研究细胞-材料相互作用提供了一个强大的平台,为未来合理设计组织特异性再生生物材料提供了见解。

意义声明

再生材料的生物物理特性促进了关键的细胞-基底相互作用,这些相互作用可以指导细胞的形态、表型和生物学反应。在这项研究中,我们描述了一种工程胶原水凝胶的制造方法,该方法可以通过改变纤维组织和大小、纳米级孔隙率和力学特性来进行修饰。我们确定了优化促进再生肌肉、骨骼和血管细胞类型的独特胶原特征组合,同时还描绘了阻碍这些相同细胞反应的特征。本研究提出了一种高度可访问的方法来控制胶原水凝胶的生物物理特性,该方法可以适应广泛的组织工程和再生应用。

相似文献

本文引用的文献

10
Pathophysiology of Atherosclerosis.动脉粥样硬化的病理生理学。
Int J Mol Sci. 2022 Mar 20;23(6):3346. doi: 10.3390/ijms23063346.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验