MoradiFotouhi Amir, Pourfath Mahdi
School of Electrical and Computer Engineering, University of Tehran Tehran Iran.
Institute for Microelectronics, TU Wien Gusshausstrasse 27-29/E360 1040 Vienna Austria
Nanoscale Adv. 2025 Jun 12. doi: 10.1039/d5na00312a.
In recent years, substantial research has driven the development of low-cost biosensors in the terahertz (THz) range. This study introduces an advanced biosensor structure that integrates a monolayer graphene strip and a gold bar within a microfluidic channel, specifically optimized to reduce environmental impact and enhance sensitivity in biological detection. The unique design incorporates a tunable plasmon-induced transparency (PIT) mechanism, enabling precise control of the coupling between dark and bright modes (graphene and gold) to achieve high sensitivity. To analyze this structure comprehensively, Maxwell's equations were solved using the finite element method (FEM) to extract -parameters, while the Lorentz oscillator model was employed to verify the damping rates and coupling coefficient of the PIT effect. Furthermore, the sensor's sensitivity can be finely adjusted by modifying its geometric parameters during fabrication and by applying an electric field. By correlating PIT resonance shifts with analyte variations within the channel, this biosensor demonstrates a sensitivity of approximately 700 GHz per RIU, highlighting its significant potential in THz biosensing applications.
近年来,大量研究推动了太赫兹(THz)波段低成本生物传感器的发展。本研究介绍了一种先进的生物传感器结构,该结构在微流控通道内集成了单层石墨烯条和金条,经过专门优化以减少环境影响并提高生物检测的灵敏度。独特的设计采用了可调谐的表面等离子体激元诱导透明(PIT)机制,能够精确控制暗模式和亮模式(石墨烯和金)之间的耦合,以实现高灵敏度。为了全面分析这种结构,使用有限元方法(FEM)求解麦克斯韦方程组以提取参数,同时采用洛伦兹振子模型来验证PIT效应的阻尼率和耦合系数。此外,通过在制造过程中修改其几何参数以及施加电场,可以精细地调节传感器的灵敏度。通过将PIT共振位移与通道内分析物的变化相关联,这种生物传感器展示出约700 GHz/RIU的灵敏度,凸显了其在太赫兹生物传感应用中的巨大潜力。