Tak Divyanshu, Garomsa Biniam A, Zapaishchykova Anna, Ye Zezhong, Vajapeyam Sridhar, Mahootiha Maryam, Pardo Juan Carlos Climent, Smith Ceilidh, Familiar Ariana M, Chaunzwa Tafadzwa L, Liu Kevin X, Prabhu Sanjay P, Bandopadhayay Pratiti, Nabavizadeh Ali, Mueller Sabine, Aerts Hugo J W L, Haas-Kogan Daphne, Poussaint Tina Y, Kann Benjamin H
Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston.
Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston.
NEJM AI. 2025 May;2(5). doi: 10.1056/aioa2400703. Epub 2025 Apr 24.
Pediatric glioma recurrence can cause morbidity and mortality; however, recurrence patterns and severity are heterogeneous and challenging to predict with established clinical and genomic markers. As a result, almost all children undergo frequent, long-term, magnetic resonance imaging (MRI) brain surveillance regardless of individual recurrence risk. Longitudinal deep-learning analysis of serial MRI scans may be an effective approach for improving individualized recurrence prediction in gliomas and other cancers, but, thus far, progress has been limited by data availability and current machine-learning approaches.
We developed a self-supervised temporal deep-learning approach tailored for longitudinal medical imaging analysis, wherein a multistep model encodes patients' serial MRI scans and is trained to classify the correct chronological order as a pretext task. The pretrained model is then fine-tuned to predict the primary end point of interest - in this case, 1-year recurrence prediction for pediatric gliomas from the point of last scan - by leveraging a patient's historical postoperative surveillance scans. We apply the model across 3994 scans from 715 patients followed at three separate institutions in the setting of pediatric low- and high-grade gliomas.
Longitudinal imaging analysis with temporal learning improved recurrence prediction performance (F1 score) by up to 58.5% (range, 6.6 to 58.5%) compared with traditional approaches across datasets, with performance improvements in both low- and high-grade gliomas and area under the receiver operating characteristic curve of (range, 75 to 89%) across all datasets. Recurrence prediction performance increased incrementally with the number of historical scans available per patient, reaching plateaus between three and six scans, depending on the dataset.
Temporal deep learning enables high-performing longitudinal medical imaging analysis and point-of-care decision support for pediatric brain tumors. Temporal learning may be broadly adaptable to track and predict risk in patients with other cancers and chronic diseases undergoing surveillance imaging. (Funded in part by the National Institutes of Health/National Cancer Institute (U54 CA274516 and P50 CA165962), and Botha-Chan Low Grade Glioma Consortium.).
小儿胶质瘤复发可导致发病和死亡;然而,复发模式和严重程度具有异质性,使用既定的临床和基因组标记进行预测具有挑战性。因此,几乎所有儿童无论个体复发风险如何,都要接受频繁、长期的脑部磁共振成像(MRI)监测。对系列MRI扫描进行纵向深度学习分析可能是改善胶质瘤和其他癌症个体化复发预测的有效方法,但迄今为止,进展受到数据可用性和当前机器学习方法的限制。
我们开发了一种为纵向医学影像分析量身定制的自监督时间深度学习方法,其中一个多步骤模型对患者的系列MRI扫描进行编码,并被训练将正确的时间顺序分类为一个 pretext 任务。然后,通过利用患者的术后历史监测扫描,对预训练模型进行微调,以预测感兴趣的主要终点——在这种情况下,从小儿胶质瘤最后一次扫描时间起的1年复发预测。我们将该模型应用于来自715名患者的3994次扫描,这些患者在三个不同机构接受小儿低级别和高级别胶质瘤的随访。
与跨数据集的传统方法相比,采用时间学习的纵向影像分析将复发预测性能(F1评分)提高了58.5%(范围为6.6%至58.5%),低级别和高级别胶质瘤的性能均有改善,所有数据集的受试者工作特征曲线下面积为75%至89%。复发预测性能随着每位患者可用历史扫描次数的增加而逐步提高,根据数据集的不同,在三次到六次扫描之间达到平稳状态。
时间深度学习能够实现高性能的纵向医学影像分析,并为小儿脑肿瘤提供即时医疗决策支持。时间学习可能具有广泛的适应性,可用于跟踪和预测接受监测成像的其他癌症和慢性病患者的风险。(部分由美国国立卫生研究院/国家癌症研究所资助(U54 CA274516和P50 CA165962),以及博塔 - 陈低级别胶质瘤联盟。)