Suppr超能文献

一种基于分数同步挤压小波变换的脑电信号时频特征提取新方法。

A novel time-frequency feature extraction method of EEG signals utilizing fractional synchrosqueezing wavelet transform.

作者信息

Fei Sheng-Wei, Chen Jia-le, Hu Yi-Bo

机构信息

College of Mechanical Engineering, Donghua University, Lane 2999, Renmin North Road, Songjiang, 201620, Shanghai, China.

出版信息

Phys Eng Sci Med. 2025 Jun 19. doi: 10.1007/s13246-025-01580-8.

Abstract

In order to improve the accuracy of Electroencephalogram (EEG) classification, Fractional Synchrosqueezing Wavelet Transform (FSSWT) is proposed to effectively overcome the contradiction between energy concentration and frequency separation in traditional time-frequency analysis methods. Firstly, the principle of FSSWT is introduced, and the time-frequency transformation equation for FSSWT applied to multi-frequency signals is established. The examples of synthetic signal and EEG signal show that the proposed method can suppress the mode aliasing of MI-EEG significantly while maintaining high resolution characteristics, and the energy concentration and related intermediate indexes perform well. The experimental results show that the proposed FSSWT-EEGDNN-ResNet model achieves an average classification accuracy of 95.17% under the condition of the MI-EEG signals processed by FSSWT of eight subjects, demonstrating the effectiveness of FSSWT in EEG signal feature extraction and classification.

摘要

为提高脑电图(EEG)分类的准确性,提出分数同步挤压小波变换(FSSWT),以有效克服传统时频分析方法中能量集中与频率分离之间的矛盾。首先介绍了FSSWT的原理,并建立了FSSWT应用于多频信号的时频变换方程。合成信号和EEG信号的实例表明,该方法在保持高分辨率特性的同时,能显著抑制运动想象脑电(MI-EEG)的模式混叠,且能量集中和相关中间指标表现良好。实验结果表明,所提出的FSSWT-EEGDNN-ResNet模型在对8名受试者的MI-EEG信号进行FSSWT处理的条件下,平均分类准确率达到95.17%,证明了FSSWT在EEG信号特征提取和分类中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验