Yao Xing, Yu Runxuan, Hu Dewei, Yang Hao, Lou Ange, Wang Jiacheng, Lu Daiwei, Arenas Gabriel, Oguz Baris, Pouch Alison, Schwartz Nadav, Byram Brett C, Oguz Ipek
Vanderbilt University.
Mayo Clinic.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981027. Epub 2025 May 12.
Ultrasound (US) image stitching can expand the field-of-view (FOV) by combining multiple US images from varied probe positions. However, registering US images with only partially overlapping anatomical contents is a challenging task. In this work, we introduce SynStitch, a self-supervised framework designed for 2DUS stitching. SynStitch consists of a synthetic stitching pair generation module (SSPGM) and an image stitching module (ISM). SSPGM utilizes a patch-conditioned ControlNet to generate realistic 2DUS stitching pairs with known affine matrix from a single input image. ISM then utilizes this synthetic paired data to learn 2DUS stitching in a supervised manner. Our framework was evaluated against multiple leading methods on a kidney ultrasound dataset, demonstrating superior 2DUS stitching performance through both qualitative and quantitative analyses. The code will be made public upon acceptance of the paper.
超声(US)图像拼接可以通过组合来自不同探头位置的多个US图像来扩展视野(FOV)。然而,将仅具有部分重叠解剖内容的US图像进行配准是一项具有挑战性的任务。在这项工作中,我们引入了SynStitch,这是一个为二维超声拼接设计的自监督框架。SynStitch由一个合成拼接对生成模块(SSPGM)和一个图像拼接模块(ISM)组成。SSPGM利用一个补丁条件控制网络从单个输入图像生成具有已知仿射矩阵的逼真二维超声拼接对。然后,ISM利用这些合成配对数据以监督方式学习二维超声拼接。我们的框架在一个肾脏超声数据集上与多种领先方法进行了评估,通过定性和定量分析展示了卓越的二维超声拼接性能。论文被接受后,代码将公开。