Suppr超能文献

SYNSTITCH:一种使用合成训练对和间接监督进行超声图像拼接的自监督学习网络。

SYNSTITCH: A SELF-SUPERVISED LEARNING NETWORK FOR ULTRASOUND IMAGE STITCHING USING SYNTHETIC TRAINING PAIRS AND INDIRECT SUPERVISION.

作者信息

Yao Xing, Yu Runxuan, Hu Dewei, Yang Hao, Lou Ange, Wang Jiacheng, Lu Daiwei, Arenas Gabriel, Oguz Baris, Pouch Alison, Schwartz Nadav, Byram Brett C, Oguz Ipek

机构信息

Vanderbilt University.

Mayo Clinic.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981027. Epub 2025 May 12.

Abstract

Ultrasound (US) image stitching can expand the field-of-view (FOV) by combining multiple US images from varied probe positions. However, registering US images with only partially overlapping anatomical contents is a challenging task. In this work, we introduce SynStitch, a self-supervised framework designed for 2DUS stitching. SynStitch consists of a synthetic stitching pair generation module (SSPGM) and an image stitching module (ISM). SSPGM utilizes a patch-conditioned ControlNet to generate realistic 2DUS stitching pairs with known affine matrix from a single input image. ISM then utilizes this synthetic paired data to learn 2DUS stitching in a supervised manner. Our framework was evaluated against multiple leading methods on a kidney ultrasound dataset, demonstrating superior 2DUS stitching performance through both qualitative and quantitative analyses. The code will be made public upon acceptance of the paper.

摘要

超声(US)图像拼接可以通过组合来自不同探头位置的多个US图像来扩展视野(FOV)。然而,将仅具有部分重叠解剖内容的US图像进行配准是一项具有挑战性的任务。在这项工作中,我们引入了SynStitch,这是一个为二维超声拼接设计的自监督框架。SynStitch由一个合成拼接对生成模块(SSPGM)和一个图像拼接模块(ISM)组成。SSPGM利用一个补丁条件控制网络从单个输入图像生成具有已知仿射矩阵的逼真二维超声拼接对。然后,ISM利用这些合成配对数据以监督方式学习二维超声拼接。我们的框架在一个肾脏超声数据集上与多种领先方法进行了评估,通过定性和定量分析展示了卓越的二维超声拼接性能。论文被接受后,代码将公开。

相似文献

1
SYNSTITCH: A SELF-SUPERVISED LEARNING NETWORK FOR ULTRASOUND IMAGE STITCHING USING SYNTHETIC TRAINING PAIRS AND INDIRECT SUPERVISION.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981027. Epub 2025 May 12.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
4
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.
J Magn Reson Imaging. 2025 Jun;61(6):2469-2479. doi: 10.1002/jmri.29686. Epub 2025 Jan 10.
7
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
8
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
9
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.

本文引用的文献

1
FNPC-SAM: Uncertainty-Guided False Negative/Positive Control for SAM on Noisy Medical Images.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006867. Epub 2024 Apr 2.
2
Fast fetal head compounding from multi-view 3D ultrasound.
Med Image Anal. 2023 Oct;89:102793. doi: 10.1016/j.media.2023.102793. Epub 2023 Mar 22.
3
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images.
IEEE Trans Med Imaging. 2022 Mar;41(3):543-558. doi: 10.1109/TMI.2021.3116879. Epub 2022 Mar 2.
4
Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis.
Med Image Comput Comput Assist Interv. 2019 Oct;11767:384-393. doi: 10.1007/978-3-030-32251-9_42. Epub 2019 Oct 10.
5
VoxelMorph: A Learning Framework for Deformable Medical Image Registration.
IEEE Trans Med Imaging. 2019 Feb 4. doi: 10.1109/TMI.2019.2897538.
6
Weakly-supervised convolutional neural networks for multimodal image registration.
Med Image Anal. 2018 Oct;49:1-13. doi: 10.1016/j.media.2018.07.002. Epub 2018 Jul 4.
7
Fast and robust 3D ultrasound registration--block and game theoretic matching.
Med Image Anal. 2015 Feb;20(1):173-83. doi: 10.1016/j.media.2014.11.004. Epub 2014 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验