Pan Yonglong, Dai Peng, Yang Zelin, Tang Xuefeng, Wang Kaiwen, Wu Mingzai
School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China.
Dalton Trans. 2025 Jul 8;54(27):10589-10598. doi: 10.1039/d5dt00974j.
The development of efficient and durable electrocatalysts for SOR-coupled HER systems is critical for advancing sustainable hydrogen production. Herein, we present a crystalline-amorphous CoS/CoOOH heterostructure anchored on nickel foam (NF) synthesized a hydrogen peroxide-assisted hydrothermal method, where lattice-ordered CoS is partially oxidized and reconstructed into amorphous CoOOH. This crystalline-amorphous heterostructure catalytic system enhances charge transfer efficiency, reducing the SOR onset potential from 1.42 V to 0.417 V. Moreover, the resultant CoS/CoOOH@NF nanocomposite exhibits exceptional bifunctional performance in a 1.0 M NaOH + 1.0 M NaS electrolyte, achieving a current density of 100 mA cm at an ultralow potential of 0.373 V and sustaining stable operation for 40 h with negligible degradation. The enhanced activity arises from synergistic interfacial interactions, where the CoS/CoOOH@NF nanocomposite optimizes charge transfer pathways, increases active site density, and dynamically manages sulfur intermediates to prevent electrode passivation. Furthermore, the amorphous CoOOH layer acts as a self-adaptive shield, alleviating structural stress during prolonged electrolysis and resisting sulfur-induced corrosion. This work provides a novel structural regulation paradigm for designing multifunctional electrocatalysts for SOR-coupled hydrogen evolution.
开发用于SOR耦合HER系统的高效耐用的电催化剂对于推动可持续制氢至关重要。在此,我们展示了一种通过过氧化氢辅助水热法合成的、锚定在泡沫镍(NF)上的晶体-非晶态CoS/CoOOH异质结构,其中晶格有序的CoS被部分氧化并重构为非晶态CoOOH。这种晶体-非晶态异质结构催化体系提高了电荷转移效率,将SOR起始电位从1.42 V降低到0.417 V。此外,所得的CoS/CoOOH@NF纳米复合材料在1.0 M NaOH + 1.0 M NaS电解液中表现出优异的双功能性能,在0.373 V的超低电位下实现了100 mA cm的电流密度,并持续稳定运行40 h,降解可忽略不计。活性增强源于协同界面相互作用,其中CoS/CoOOH@NF纳米复合材料优化了电荷转移途径,增加了活性位点密度,并动态管理硫中间体以防止电极钝化。此外,非晶态CoOOH层作为一种自适应屏蔽层,减轻了长时间电解过程中的结构应力,并抵抗硫诱导的腐蚀。这项工作为设计用于SOR耦合析氢的多功能电催化剂提供了一种新颖的结构调控范例。