Suppr超能文献

机器学习原子间势中的全局通用缩放和具有超线性的超小参数化

Global universal scaling and ultrasmall parameterization in machine-learning interatomic potentials with superlinearity.

作者信息

Hu Yanxiao, Sheng Ye, Huang Jing, Xu Xiaoxin, Yang Yuyan, Zhang Mingqiang, Wu Yabei, Ye Caichao, Yang Jiong, Zhang Wenqing

机构信息

State Key Laboratory of Quantum Functional Materials and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China.

出版信息

Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2503439122. doi: 10.1073/pnas.2503439122. Epub 2025 Jun 20.

Abstract

Using machine learning (ML) to construct interatomic interactions and thus potential energy surface (PES) has become a common strategy for materials design and simulations. However, those current models of machine-learning interatomic potential (MLIP) consider no relevant physical constraints or global scaling and thus may owe intrinsic out-of-domain difficulty which underlies the challenges of model generalizability and physical scalability. Here, by incorporating the global universal scaling law, we develop an ultrasmall parameterized MLIP with superlinear expressive capability, named SUS-MLIP. Due to the global scaling derived from the universal equation of state (UEOS), SUS-MLIP not only has significantly reduced parameters by decoupling the element space from coordinate space but also naturally outcomes the out-of-domain difficulty and endows the model with inherent generalizability and scalability even with relatively small training dataset. The non-linearity-embedding transformation in radial function endows the model with superlinear expressive capability. SUS-MLIP outperforms the state-of-the-art MLIP models with its exceptional computational efficiency, especially for multiple-element materials and physical scalability in property prediction. This work not only presents a highly efficient universal MLIP model but also sheds light on incorporating physical constraints into AI-aided materials simulation.

摘要

利用机器学习(ML)构建原子间相互作用进而构建势能面(PES)已成为材料设计与模拟的常用策略。然而,当前那些机器学习原子间势(MLIP)模型未考虑相关物理约束或全局缩放,因此可能存在内在的域外困难,这构成了模型泛化性和物理可扩展性挑战的基础。在此,通过纳入全局通用缩放定律,我们开发了一种具有超线性表达能力的超小参数化MLIP,名为SUS - MLIP。由于从通用状态方程(UEOS)导出的全局缩放,SUS - MLIP不仅通过将元素空间与坐标空间解耦显著减少了参数,还自然地解决了域外困难,并赋予模型固有的泛化性和可扩展性,即使使用相对较小的训练数据集也是如此。径向函数中的非线性嵌入变换赋予模型超线性表达能力。SUS - MLIP在计算效率方面表现卓越,尤其在多元素材料和性能预测的物理可扩展性方面优于当前最先进的MLIP模型。这项工作不仅提出了一个高效的通用MLIP模型,还为将物理约束纳入人工智能辅助材料模拟提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014b/12207430/65f81e23c67e/pnas.2503439122fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验