Suppr超能文献

通过使用磷酸钙离子簇和纳米羟基磷灰石的无机离子聚合实现仿生牙釉质修复。

Bioinspired enamel repair via inorganic ionic polymerization using calcium phosphate ionic clusters and nano-hydroxyapatite.

作者信息

Elkhouly Marwa A, Emara Mahmoud M, Nady Norhan, Elkadi Ahmed S, Kandil Sherif H

机构信息

Materials Science Department, Institute of Graduate Studies and Research, Alexandria University, El Shatby, Alexandria, 21526, Egypt.

Chemistry Department, Faculty of Science, Alexandria University, Baghdad Street, P.O. Box 21511, Moharam Bey, Alexandria, Egypt.

出版信息

Sci Rep. 2025 Jun 20;15(1):20207. doi: 10.1038/s41598-025-06434-7.

Abstract

Traditional restorative materials often fail to integrate seamlessly with natural tooth structures due to differences in chemical composition, leading to microleakage and related clinical problems. This study aims to create a material entirely composed of calcium phosphates, the main component of dental enamel, to repair minor enamel cavities. Inspired by the biomineralization process and employing the inorganic ionic polymerization strategy, a cohesive calcium phosphate mass was developed to repair minor enamel cavities. Calcium phosphate ionic clusters (CPICs) and three types of calcium phosphate powder were utilized; (bone-derived and synthetic hydroxyapatite; (BHA and SHA), and dried CPICs. Two different techniques, namely layer by layer (LbL) and premixing (PM), were employed to mix CPICs with one type of calcium phosphate powder to form a cohesive mass. Different analysis techniques were used including FTIR, XRD, SEM and TEM. Among the tested approaches, the mass formed by mixing BHA with CPICs using the PM technique demonstrated superior integration with enamel walls and infiltration of calcium phosphate particles into enamel. To the best of our knowledge, repairing cavitated enamel defects using a bioinspired approach with a material composed entirely of calcium phosphate has not yet been achieved.

摘要

由于化学成分的差异,传统的修复材料往往无法与天然牙齿结构无缝整合,从而导致微渗漏及相关临床问题。本研究旨在制造一种完全由磷酸钙(牙釉质的主要成分)组成的材料,用于修复较小的牙釉质龋洞。受生物矿化过程启发并采用无机离子聚合策略,研发出一种用于修复较小牙釉质龋洞的粘性磷酸钙团块。使用了磷酸钙离子簇(CPICs)和三种类型的磷酸钙粉末;(骨源性和合成羟基磷灰石;(BHA和SHA),以及干燥的CPICs。采用两种不同技术,即逐层(LbL)和预混合(PM),将CPICs与一种磷酸钙粉末混合以形成粘性团块。使用了包括傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)在内的不同分析技术。在测试的方法中,采用PM技术将BHA与CPICs混合形成的团块与牙釉质壁表现出更好的整合,且磷酸钙颗粒渗入牙釉质。据我们所知,尚未实现使用完全由磷酸钙组成的材料通过仿生方法修复牙釉质龋损。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f3e/12181249/a0d5f131a009/41598_2025_6434_Fig1_HTML.jpg

相似文献

4
Dental fillings for the treatment of caries in the primary dentition.
Cochrane Database Syst Rev. 2009 Apr 15(2):CD004483. doi: 10.1002/14651858.CD004483.pub2.
5
Wear of ceramic and antagonist--a systematic evaluation of influencing factors in vitro.
Dent Mater. 2008 Apr;24(4):433-49. doi: 10.1016/j.dental.2007.06.016. Epub 2007 Aug 27.
6
Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries.
Cochrane Database Syst Rev. 2017 Dec 28;12(12):CD008072. doi: 10.1002/14651858.CD008072.pub2.
7
Preparation of calcium phosphate ion clusters through atomization method for biomimetic mineralization of enamel.
J Biomed Mater Res A. 2024 Sep;112(9):1412-1423. doi: 10.1002/jbm.a.37706. Epub 2024 Mar 10.
8
Pulp treatment for extensive decay in primary teeth.
Cochrane Database Syst Rev. 2018 May 31;5(5):CD003220. doi: 10.1002/14651858.CD003220.pub3.
9
Low-temperature plasma effect-induced enhancement of osteogenic activity in calcium phosphate ceramics.
Acta Biomater. 2025 Jun 15;200:667-685. doi: 10.1016/j.actbio.2025.04.048. Epub 2025 May 2.
10
Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects.
Cochrane Database Syst Rev. 2009 Oct 7;2009(4):CD003875. doi: 10.1002/14651858.CD003875.pub3.

本文引用的文献

1
The effect of calcium phosphate ion clusters in enhancing enamel conditions versus Duraphat and Icon.
Aust Endod J. 2023 Sep;49 Suppl 1:46-57. doi: 10.1111/aej.12689. Epub 2022 Sep 20.
2
Calcium Phosphate Nanoclusters for the Repair of Tooth Enamel Erosion.
Nanomaterials (Basel). 2022 Jun 10;12(12):1997. doi: 10.3390/nano12121997.
3
Bioactive remineralization of dentin surface with calcium phosphate-based agents: An analysis.
J Conserv Dent. 2022 Jan-Feb;25(1):93-97. doi: 10.4103/jcd.jcd_583_21. Epub 2022 May 2.
4
Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation.
Annu Rev Phys Chem. 2022 Apr 20;73:453-477. doi: 10.1146/annurev-physchem-082720-100947. Epub 2022 Feb 3.
5
Advances in biomineralization-inspired materials for hard tissue repair.
Int J Oral Sci. 2021 Dec 7;13(1):42. doi: 10.1038/s41368-021-00147-z.
6
β-tricalcium phosphate for bone substitution: Synthesis and properties.
Acta Biomater. 2020 Sep 1;113:23-41. doi: 10.1016/j.actbio.2020.06.022. Epub 2020 Jun 19.
7
Effect of chitosan infiltration on hydroxyapatite scaffolds derived from New Zealand bovine cancellous bones for bone regeneration.
Int J Biol Macromol. 2020 Oct 1;160:1009-1020. doi: 10.1016/j.ijbiomac.2020.05.269. Epub 2020 Jun 3.
8
Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth.
Sci Adv. 2019 Aug 30;5(8):eaaw9569. doi: 10.1126/sciadv.aaw9569. eCollection 2019 Aug.
9
Syntheses of hydroxyapatite from natural sources.
Heliyon. 2019 May 8;5(5):e01588. doi: 10.1016/j.heliyon.2019.e01588. eCollection 2019 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验