Suppr超能文献

用于妥布霉素检测的Au/rGO上的分子印迹聚二氨基萘/氧化锌纳米复合材料:形态效应和分子动力学模拟的全面洞察

Molecularly imprinted poly(diaminonaphthalene)/zinc oxide nanocomposite on Au/rGO for tobramycin detection: a comprehensive insight of morphological effect and MD simulation.

作者信息

Jamshid Atefeh Mesbahi, Ghamari Fatemeh, Arjomandi Jalal, Shi Hu, Shuang Shaomin

机构信息

School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.

Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 38695-65178, Iran.

出版信息

Mikrochim Acta. 2025 Jul 4;192(8):477. doi: 10.1007/s00604-025-07301-y.

Abstract

Tobramycin (Tob) is used to treat serious infectious diseases, so careful monitoring of its concentration through a sensor that can detect small quantities of Tob in medicines and food is essential. Herein, novel molecularly imprinted (MI) poly(1,5-diaminonaphtalene)/zinc oxide (PDan/ZnO)) nanocomposite sensor with Tob recognition sites based on reduced graphene oxide modified gold electrode (Au/rGO) as molecular imprinted polymer nanocomposite (MIPN) was fabricated by in situ electropolymerization method. Besides MIPN, non-molecular imprinted polymer nanocomposite (Au/rGO/PDan/ZnO) as N-MIPN electrode was constructed and compared with MIPN. The N-MIPN and MIPN electrodes were characterized by physicochemical and electrochemical methods. To improve the performance and optimization of MIPN sensor during nanocomposite growth on the Au/rGO surface, atomic force microscopy (AFM), and field - emission scanning electron microscopy (FE-SEM) techniques were employed. The results revealed that among MIPN electrodes with various polymer nanocomposite thicknesses, MIPN-8 (8: number of growth cycle) by taking advantage of significant morphological properties including optimum height quantities distribution, non-typical surface texture, and remarkable roughness and fractal dimension (D) offered the optimum performance. To assess the detection capabilities of the developed MIPN-8 sensor, differential pulse voltammetry (DPV) measurements were carried out using varying concentrations of Tob under optimal conditions. The electrochemical MIPN-8 sensor exhibited a high sensitivity toward Tob with a limit of detection (LOD) of 4.210 × 10 mol. L and limit of quantification (LOQ) of 1.276 × 10 mol. L. The selectivity of the sensor for Tob was around 2.34, 2.65, 7.42, 7.31, and 8.02 times more than that of Gentamicin (GM), Kanamycin (KAN), Chlortetracycline Hydrochloride (CTCH), Oxytetracycline Hydrochloride (OTCH), and Ziprasidone Hydrochloride (ZIP) antibiotics, respectively. The selectivity of the MIPN for the detection of the interference substances including the above antibiotics was examined. The MIPN-8 sensor showed good reproducibility with a relative standard deviation (RSD) of 1.59%. The MIPN-8 sensor performances for real samples, e.g., eye drops, chicken egg, and milk were investigated. Finally, the specific Gibbs binding energies and binding interactions of the MIPN-8 sensor with Tob target were studied by molecular dynamic (MD) simulation and the energy of adsorption was ∆G = - 11.47 ± 3.71 kCal.mol and for desorption was ∆G = - 7.56 ± 6.71 kCal.mol.

摘要

妥布霉素(Tob)用于治疗严重的传染病,因此通过能够检测药品和食品中少量妥布霉素的传感器对其浓度进行仔细监测至关重要。在此,基于还原氧化石墨烯修饰金电极(Au/rGO)作为分子印迹聚合物纳米复合材料(MIPN),通过原位电聚合法制备了具有妥布霉素识别位点的新型分子印迹(MI)聚(1,5 - 二氨基萘)/氧化锌(PDan/ZnO)纳米复合传感器。除了MIPN,还构建了非分子印迹聚合物纳米复合材料(Au/rGO/PDan/ZnO)作为N - MIPN电极并与MIPN进行比较。通过物理化学和电化学方法对N - MIPN和MIPN电极进行了表征。为了在Au/rGO表面纳米复合材料生长过程中提高MIPN传感器的性能并进行优化,采用了原子力显微镜(AFM)和场发射扫描电子显微镜(FE - SEM)技术。结果表明,在具有不同聚合物纳米复合材料厚度的MIPN电极中,MIPN - 8(8:生长循环次数)利用显著的形态学特性,包括最佳的高度量分布、非典型的表面纹理以及显著的粗糙度和分形维数(D),提供了最佳性能。为了评估所开发的MIPN - 8传感器的检测能力,在最佳条件下使用不同浓度的妥布霉素进行了差分脉冲伏安法(DPV)测量。电化学MIPN - 8传感器对妥布霉素表现出高灵敏度,检测限(LOD)为4.210×10⁻⁹ mol·L,定量限(LOQ)为1.276×10⁻⁸ mol·L。该传感器对妥布霉素的选择性分别比对庆大霉素(GM)、卡那霉素(KAN)、盐酸金霉素(CTCH)、盐酸土霉素(OTCH)和盐酸齐拉西酮(ZIP)抗生素高约2.34、2.65、7.42、7.31和8.02倍。研究了MIPN对包括上述抗生素在内的干扰物质的检测选择性。MIPN - 8传感器显示出良好的重现性,相对标准偏差(RSD)为1.59%。研究了MIPN - 8传感器对实际样品(如眼药水、鸡蛋和牛奶)的性能。最后,通过分子动力学(MD)模拟研究了MIPN - 8传感器与妥布霉素靶标的特定吉布斯结合能和结合相互作用,吸附能为∆G = - 11.47±3.71 kCal·mol,解吸能为∆G = - 7.56±6.71 kCal·mol。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验