Suppr超能文献

一种用于从超声心动图分类视图和诊断主动脉瓣狭窄的新型半监督学习基准。

A New Semi-supervised Learning Benchmark for Classifying View and Diagnosing Aortic Stenosis from Echocardiograms.

作者信息

Huang Zhe, Long Gary, Wessler Benjamin, Hughes Michael C

机构信息

Dept. of Computer Science, Tufts University, Medford, MA, USA.

CVAI Solutions, Dorchester, MA.

出版信息

Proc Mach Learn Res. 2021 Aug;149:614-647.

Abstract

Semi-supervised image classification has shown substantial progress in learning from limited labeled data, but recent advances remain largely untested for clinical applications. Motivated by the urgent need to improve timely diagnosis of life-threatening heart conditions, especially aortic stenosis, we develop a benchmark dataset to assess semi-supervised approaches to two tasks relevant to cardiac ultrasound (echocardiogram) interpretation: view classification and disease severity classification. We find that a state-of-the-art method called MixMatch achieves promising gains in heldout accuracy on both tasks, learning from a large volume of truly unlabeled images as well as a labeled set collected at great expense to achieve better performance than is possible with the labeled set alone. We further pursue diagnosis prediction, which requires aggregating across hundreds of images of diverse view types, most of which are irrelevant, to make a coherent prediction. The best patient-level performance is achieved by new methods that diagnosis predictions from images that are predicted to be clinically-relevant views and knowledge from the view task to the diagnosis task. We hope our released dataset and evaluation framework inspire further improvements in multi-task semi-supervised learning for clinical applications.

摘要

半监督图像分类在利用有限的标记数据进行学习方面已取得显著进展,但近期的进展在临床应用中大多尚未得到检验。出于迫切需要改善对危及生命的心脏疾病(尤其是主动脉瓣狭窄)的及时诊断的动机,我们开发了一个基准数据集,以评估半监督方法在与心脏超声(超声心动图)解读相关的两项任务上的表现:视图分类和疾病严重程度分类。我们发现,一种名为MixMatch的先进方法在这两项任务的验证准确性上取得了可观的提升,它从大量真正未标记的图像以及一个花费巨大收集的标记集进行学习,从而实现了比仅使用标记集更好的性能。我们进一步进行诊断预测,这需要汇总数百张不同视图类型的图像(其中大部分是不相关的)以做出连贯的预测。通过将预测为临床相关视图的图像的诊断预测以及将视图任务的知识转移到诊断任务的新方法,可实现最佳的患者水平性能。我们希望我们发布的数据集和评估框架能激发临床应用中多任务半监督学习的进一步改进。

相似文献

2
SPEMix: a lightweight method via superclass pseudo-label and efficient mixup for echocardiogram view classification.
Front Artif Intell. 2025 Jan 8;7:1467218. doi: 10.3389/frai.2024.1467218. eCollection 2024.
3
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11.
4
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
IEEE Access. 2019;7:11093-11104. doi: 10.1109/ACCESS.2019.2891970. Epub 2019 Jan 9.
5
Semi-supervised abdominal multi-organ segmentation by object-redrawing.
Med Phys. 2024 Nov;51(11):8334-8347. doi: 10.1002/mp.17364. Epub 2024 Aug 21.
6
Semi-supervised Machine Learning with MixMatch and Equivalence Classes.
Lect Notes Monogr Ser. 2020;12446:112-121. Epub 2020 Oct 2.
7
Boundary attention with multi-task consistency constraints for semi-supervised 2D echocardiography segmentation.
Comput Biol Med. 2024 Mar;171:108100. doi: 10.1016/j.compbiomed.2024.108100. Epub 2024 Feb 5.
8
Improving Colonoscopy Lesion Classification Using Semi-Supervised Deep Learning.
IEEE Access. 2021;9:631-640. doi: 10.1109/access.2020.3047544. Epub 2020 Dec 25.
9
Deep clustering for abdominal organ classification in ultrasound imaging.
J Med Imaging (Bellingham). 2023 May;10(3):034502. doi: 10.1117/1.JMI.10.3.034502. Epub 2023 May 18.
10
Co-Labeling for Multi-View Weakly Labeled Learning.
IEEE Trans Pattern Anal Mach Intell. 2016 Jun;38(6):1113-25. doi: 10.1109/TPAMI.2015.2476813. Epub 2015 Sep 4.

引用本文的文献

2
RAMAS-Net: a module-optimized convolutional network model for aortic valve stenosis recognition in echocardiography.
Front Med (Lausanne). 2025 Apr 28;12:1587307. doi: 10.3389/fmed.2025.1587307. eCollection 2025.
3
PanEcho: Complete AI-enabled echocardiography interpretation with multi-task deep learning.
medRxiv. 2025 Apr 16:2024.11.16.24317431. doi: 10.1101/2024.11.16.24317431.

本文引用的文献

1
Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
Med Image Anal. 2021 May;70:102010. doi: 10.1016/j.media.2021.102010. Epub 2021 Feb 22.
4
Classification of Aortic Stenosis Using ECG by Deep Learning and its Analysis Using Grad-CAM.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1548-1551. doi: 10.1109/EMBC44109.2020.9175151.
5
Video-based AI for beat-to-beat assessment of cardiac function.
Nature. 2020 Apr;580(7802):252-256. doi: 10.1038/s41586-020-2145-8. Epub 2020 Mar 25.
6
Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography.
J Am Heart Assoc. 2020 Apr 7;9(7):e014717. doi: 10.1161/JAHA.119.014717. Epub 2020 Mar 21.
7
Deep Learning for Cardiac Image Segmentation: A Review.
Front Cardiovasc Med. 2020 Mar 5;7:25. doi: 10.3389/fcvm.2020.00025. eCollection 2020.
8
Deep learning interpretation of echocardiograms.
NPJ Digit Med. 2020 Jan 24;3:10. doi: 10.1038/s41746-019-0216-8. eCollection 2020.
9
Aortic Valve Stenosis Treatment Disparities in the Underserved: JACC Council Perspectives.
J Am Coll Cardiol. 2019 Nov 5;74(18):2313-2321. doi: 10.1016/j.jacc.2019.08.1035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验