Suppr超能文献

一种基于磁阻随机存取存储器(MRAM)的混合信号电路的可扩展神经网络模拟器。

A scalable neural network emulator with MRAM-based mixed-signal circuits.

作者信息

Lee Jua, Song Jiho, Im Hyeon Seong, Kim Jonghwi, Lee Woonjae, Yi Wooseok, Kwon Soonwan, Jung Byungsu, Kim Joohyoung, Lee Yoonmyung, Chun Jung-Hoon

机构信息

College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.

Memory Division, Samsung Electronics, Hwaseong, Republic of Korea.

出版信息

Front Neurosci. 2025 Jun 9;19:1599144. doi: 10.3389/fnins.2025.1599144. eCollection 2025.

Abstract

In this study, we present a mixed-signal framework that utilizes MRAM (Magneto-resistive Random Access Memory) technology to emulate behaviors observed in biological neural networks on silicon substrates. While modern technology increasingly draws inspiration from biological neural networks, fully understanding these complex systems remains a significant challenge. Our framework integrates multi-bit MRAM synapse arrays and analog circuits to replicate essential neural functions, including Leaky Integrate and Fire (LIF) dynamics, Excitatory and Inhibitory Postsynaptic Potentials (EPSP and IPSP), the refractory period, and the lateral inhibition. A key challenge in using MRAM for neuromorphic systems is its low on/off resistance ratio, which limits the accuracy of current-mode analog computation. To overcome this, we introduce a current subtraction architecture that reliably generates multi-level synaptic currents based on MRAM states. This enables robust analog neural processing while preserving MRAM's advantages, such as non-volatility and CMOS compatibility. The chip's adjustable operating frequency allows it to replicate biologically realistic time scales as well as accelerate experimental processes. Experimental results from fabricated chips confirm the successful emulation of biologically inspired neural dynamics, demonstrating the feasibility of MRAM-based analog neuromorphic computation for real-time and scalable neural emulation.

摘要

在本研究中,我们提出了一种混合信号框架,该框架利用磁阻随机存取存储器(MRAM)技术在硅基板上模拟生物神经网络中观察到的行为。虽然现代技术越来越多地从生物神经网络中汲取灵感,但全面理解这些复杂系统仍然是一项重大挑战。我们的框架集成了多位MRAM突触阵列和模拟电路,以复制基本的神经功能,包括泄漏积分发放(LIF)动力学、兴奋性和抑制性突触后电位(EPSP和IPSP)、不应期和侧向抑制。将MRAM用于神经形态系统的一个关键挑战是其开/关电阻比低,这限制了电流模式模拟计算的精度。为克服这一问题,我们引入了一种电流减法架构,该架构可根据MRAM状态可靠地生成多级突触电流。这使得在保留MRAM的优势(如非易失性和CMOS兼容性)的同时,能够进行强大的模拟神经处理。该芯片的可调工作频率使其能够复制生物学上现实的时间尺度,并加速实验过程。制造芯片的实验结果证实了成功模拟了受生物启发的神经动力学,证明了基于MRAM的模拟神经形态计算用于实时和可扩展神经模拟的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18a9/12183957/c9c3fbe46b3e/fnins-19-1599144-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验