Zhao Lihuan, Wang Jiajun, Wu Lin-Sheng, Zhao Xin
State Key Laboratory of Radio Frequency Heterogeneous Integration, Shanghai Jiao Tong University, Shanghai, China.
Guiji Life Sciences Co., Ltd, Suzhou, China.
Microsyst Nanoeng. 2025 Jun 25;11(1):129. doi: 10.1038/s41378-025-00979-3.
Solid-state nanopores (SSNPs) have emerged as a transformative platform in nanotechnology and biotechnology, yet their application is limited by the lack of cost-effective, reproducible fabrication technology. Here, we introduce a novel SpacerX process for wafer-scale fabrication of well-ordered nanopore arrays inspired by spacer patterning used in the standard semiconductor manufacturing process. This technique is intrinsically scalable and features tunable nanopore dimensions, with an open-pore rate exceeding 99.9%, even in an academic cleanroom. We successfully demonstrated a silicon nitride (SiN) nanopore array with a diameter of ~30 nm, non-uniformity below 10%, and spacing of 10 μm. By further reducing the spacer size, the nanopore diameter can be minimized to 10 nm. We fabricated multi-pore devices and showed that dual-pore devices offer higher detection throughput for DNA molecules. The SpacerX process only involves two ultraviolet lithography steps with one mask, and can be readily adopted by commercial foundries, thus opening the possibility of mass-producing sub-10 nm SSNPs at extremely low cost.
固态纳米孔(SSNPs)已成为纳米技术和生物技术领域的一个变革性平台,但其应用受到缺乏经济高效、可重复制造技术的限制。在此,我们引入一种新颖的SpacerX工艺,用于晶圆级制造有序纳米孔阵列,该工艺灵感来源于标准半导体制造工艺中使用的间隔物图案化技术。这项技术本质上具有可扩展性,其特点是纳米孔尺寸可调,即使在学术洁净室中,开孔率也超过99.9%。我们成功展示了一种直径约为30纳米、不均匀度低于10%且间距为10微米的氮化硅(SiN)纳米孔阵列。通过进一步减小间隔物尺寸,纳米孔直径可最小化至10纳米。我们制造了多孔器件,并表明双孔器件对DNA分子具有更高的检测通量。SpacerX工艺仅涉及两个紫外光刻步骤且只需一个掩膜,商业代工厂可轻易采用,从而开启了以极低的成本大规模生产亚10纳米固态纳米孔的可能性。