Zhong Qiyun, He Qingsong, Liu Diyi, Lu Xinyu, Liu Siyuan, Ye Yuze, Wang Yefu
Jiangsu Provincial Key Laboratory of Bionic Materials and Equipment, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Key Laboratory of Advanced Technology for Small and Medium-Sized UAV, Ministry of Industry and Information Technology, Unmanned Aerial Vehicles Research Institute, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Biomimetics (Basel). 2025 Jun 3;10(6):363. doi: 10.3390/biomimetics10060363.
In contrast to traditional hydrogels, which are susceptible to water evaporation and structural degradation, non-hydrogel materials are engineered for superior stability and consistent performance. Here, we report an innovative piezoelectric polyvinyl chloride/multi-walled carbon nanotube polymer gel (PVC/MWCNT polymer gel, PMPG) with exceptional linearity (as low as 1.31%), high sensitivity (50-310.17 mV), rapid response (172-189 ms), and thermal stability. Under strain induction, ordered rearrangement of dipoles in PMPG and the enhancement of MWCNTs generate a potential difference. Increasing MWCNT content enhances output voltage, sensitivity, conductivity, maximum stress, Young's modulus, and toughness, while reducing nonlinear error. Higher dibutyl adipate (DBA) content increases output voltage and slightly improves sensitivity but decreases mechanical strength. The optimal PMPG (PVC:DBA = 1:5, 1 wt% MWCNTs) exhibited outstanding performance. It exhibits a nonlinear error as low as 1.31%, a conductivity of 25.4 μS/cm, an 80% compressive strain tolerance (273 kPa stress), and dimensional stability for 90 days in air. By integrating PMPG with machine learning algorithms, soft robotic grippers gain advanced contact perception capabilities, enabling applications in medicine, rescue, exploration, and other fields requiring fine manipulation and adaptability. This work highlights PMPG's potential as a stable, high-performance material for soft robotics and beyond.
与易受水蒸发和结构降解影响的传统水凝胶不同,非水凝胶材料经过精心设计,具有卓越的稳定性和一致的性能。在此,我们报告了一种创新的压电聚氯乙烯/多壁碳纳米管聚合物凝胶(PVC/MWCNT聚合物凝胶,PMPG),具有出色的线性度(低至1.31%)、高灵敏度(50 - 310.17 mV)、快速响应(172 - 189 ms)和热稳定性。在应变诱导下,PMPG中偶极子的有序重排以及MWCNT的增强产生了电位差。增加MWCNT含量可提高输出电压、灵敏度、电导率、最大应力、杨氏模量和韧性,同时降低非线性误差。较高的己二酸二丁酯(DBA)含量会增加输出电压并略微提高灵敏度,但会降低机械强度。最佳的PMPG(PVC:DBA = 1:5,1 wt% MWCNTs)表现出卓越的性能。它具有低至1.31%的非线性误差、25.4 μS/cm的电导率、80%的压缩应变耐受性(273 kPa应力),并且在空气中90天内尺寸稳定。通过将PMPG与机器学习算法相结合,软机器人抓手获得了先进的接触感知能力,使其能够应用于医学、救援、探索以及其他需要精细操作和适应性的领域。这项工作突出了PMPG作为软机器人及其他领域稳定、高性能材料的潜力。