文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微针在表面增强拉曼散射检测原位采样中的应用研究进展

Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection.

作者信息

Yang Weiqing, Chen Ying, Cheng Xingliang, Liu Shuojiang, Zhu Huiqi, Hu Yuling

机构信息

School of Chemistry, Sun Yat-sen University, Guangzhou 510060, China.

出版信息

Biosensors (Basel). 2025 Jun 1;15(6):350. doi: 10.3390/bios15060350.


DOI:10.3390/bios15060350
PMID:40558432
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12190841/
Abstract

The efficient and non-invasive collection of biological samples has become a critical challenge for the continued development of surface-enhanced Raman scattering (SERS). When integrated with minimally invasive microneedle (MN) sampling technology, SERS enhances its applicability in real-time, non-invasive molecular detection. This review focuses on the latest advances in MN-based SERS sensors. Firstly, a comprehensive summary is presented of MN types and research progress in the design and engineering of SERS-active MNs. Then, the sampling method of SERS MNs and the MN-based SERS detection mode are also described in detail. Finally, the applications of SERS MNs in fields such as disease diagnosis, drug monitoring, and food safety are highlighted. Additionally, current challenges are discussed and future development prospects are prospected with the aim of contributing to the design of MN-based SERS sensors for diverse applications.

摘要

生物样品的高效无创采集已成为表面增强拉曼散射(SERS)持续发展的一项关键挑战。当与微创微针(MN)采样技术相结合时,SERS增强了其在实时无创分子检测中的适用性。本综述聚焦于基于MN的SERS传感器的最新进展。首先,全面总结了MN的类型以及SERS活性MN设计与工程方面的研究进展。然后,还详细描述了SERS MN的采样方法以及基于MN的SERS检测模式。最后,突出了SERS MN在疾病诊断、药物监测和食品安全等领域的应用。此外,还讨论了当前面临的挑战并展望了未来的发展前景,旨在为设计用于各种应用的基于MN的SERS传感器提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/48da9d7b508a/biosensors-15-00350-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/ea2c11ce5368/biosensors-15-00350-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/166d3d6bf8db/biosensors-15-00350-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/f431b6461cbc/biosensors-15-00350-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/d9637d2a1e9b/biosensors-15-00350-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/5318851e135e/biosensors-15-00350-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/606d013e0b2f/biosensors-15-00350-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/6c5763a89cff/biosensors-15-00350-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/f52e296c5b76/biosensors-15-00350-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/48da9d7b508a/biosensors-15-00350-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/ea2c11ce5368/biosensors-15-00350-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/166d3d6bf8db/biosensors-15-00350-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/f431b6461cbc/biosensors-15-00350-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/d9637d2a1e9b/biosensors-15-00350-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/5318851e135e/biosensors-15-00350-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/606d013e0b2f/biosensors-15-00350-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/6c5763a89cff/biosensors-15-00350-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/f52e296c5b76/biosensors-15-00350-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12190841/48da9d7b508a/biosensors-15-00350-g009.jpg

相似文献

[1]
Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection.

Biosensors (Basel). 2025-6-1

[2]
Recent advances in the design of SERS substrates and sensing systems for (bio)sensing applications: Systems from single cell to single molecule detection.

F1000Res. 2025-3-18

[3]
Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications.

J Adv Res. 2023-9

[4]
Challenges and Advances of Interstitial Skin Fluid Wearable Smart Sensors on Emerging Microneedle Platforms.

Anal Chem. 2025-6-24

[5]
Surface-Enhanced Raman Scattering Nanotags: Design Strategies, Biomedical Applications, and Integration of Machine Learning.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[6]
Large-Area Nanogap Platforms for Surface-Enhanced Raman Spectroscopy Toward Sensing Applications: Comparison Between Ag and Au.

Biosensors (Basel). 2025-6-9

[7]
Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection.

Biosensors (Basel). 2025-6-5

[8]
Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges.

ACS Appl Mater Interfaces. 2025-3-19

[9]
Au-Ag Bimetallic Nanoparticles for Surface-Enhanced Raman Scattering (SERS) Detection of Food Contaminants: A Review.

Foods. 2025-6-16

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

引用本文的文献

[1]
Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications.

Micromachines (Basel). 2025-8-13

本文引用的文献

[1]
Multifunctional Hydrogel Microneedles (HMNs) in Drug Delivery and Diagnostics.

Gels. 2025-3-15

[2]
Rapid enrichment and SERS differentiation of various bacteria in skin interstitial fluid by 4-MPBA-AuNPs-functionalized hydrogel microneedles.

J Pharm Anal. 2025-3

[3]
Wearable SERS devices in health management: Challenges and prospects.

Spectrochim Acta A Mol Biomol Spectrosc. 2025-6-5

[4]
Advances, Challenges, and Opportunities in Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.

ACS Nano. 2025-1-28

[5]
Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens. 2025-1-24

[6]
Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices.

Adv Healthc Mater. 2025-1

[7]
Bifunctional MoO/CuS Heterojunction Nanozyme-Driven "Turn-On" SERS Signal for the Sensitive Detection of Cerebral Infarction Biomarker S100B.

Anal Chem. 2024-11-5

[8]
Microorganism microneedle micro-engine depth drug delivery.

Nat Commun. 2024-10-17

[9]
Inkjet Printing Patterned Plasmonic SERS Platform with Surface-Optimized Paper for Label-Free Detection of Illegal Drugs in Urine.

Anal Chem. 2024-10-22

[10]
A Multicomponent Microneedle Patch for the Delivery of Meloxicam for Veterinary Applications.

ACS Nano. 2024-9-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索