文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性 CS/PVA/HA/pSPIONs 支架的制备及体外特性研究——用于磁热疗和骨再生。

Preparation and In Vitro Characterization of Magnetic CS/PVA/HA/pSPIONs Scaffolds for Magnetic Hyperthermia and Bone Regeneration.

机构信息

i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, 2829-516 Caparica, Portugal.

i3N/CENIMAT, Department of Physics, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal.

出版信息

Int J Mol Sci. 2023 Jan 6;24(2):1128. doi: 10.3390/ijms24021128.


DOI:10.3390/ijms24021128
PMID:36674644
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9863008/
Abstract

Conventional bone cancer treatment often results in unwanted side effects, critical-sized bone defects, and inefficient cancer-cell targeting. Therefore, new approaches are necessary to better address bone cancer treatment and patient's recovery. One solution may reside in the combination of bone regeneration scaffolds with magnetic hyperthermia. By incorporating pristine superparamagnetic iron oxide nanoparticles (pSPIONs) into additively manufactured scaffolds we created magnetic structures for magnetic hyperthermia and bone regeneration. For this, hydroxyapatite (HA) particles were integrated in a polymeric matrix composed of chitosan (CS) and poly (vinyl alcohol) (PVA). Once optimized, pSPIONs were added to the CS/PVA/HA paste at three different concentrations (1.92, 3.77, and 5.54 wt.%), and subsequently additively manufactured to form a scaffold. Results indicate that scaffolds containing 3.77 and 5.54 wt.% of pSPIONs, attained temperature increases of 6.6 and 7.5 °C in magnetic hyperthermia testing, respectively. In vitro studies using human osteosarcoma Saos-2 cells indicated that pSPIONs incorporation significantly stimulated cell adhesion, proliferation and alkaline phosphatase (ALP) expression when compared to CS/PVA/HA scaffolds. Thus, these results support that CS/PVA/HA/pSPIONs scaffolds with pSPIONs concentrations above or equal to 3.77 wt.% have the potential to be used for magnetic hyperthermia and bone regeneration.

摘要

传统的骨癌治疗方法常常导致不可取的副作用、临界尺寸的骨缺损和低效的癌细胞靶向。因此,需要新的方法来更好地解决骨癌治疗和患者康复的问题。一种解决方案可能在于将骨再生支架与磁热疗相结合。通过将原始超顺磁氧化铁纳米粒子(pSPIONs)纳入增材制造的支架中,我们为磁热疗和骨再生创建了磁性结构。为此,将羟基磷灰石(HA)颗粒整合到由壳聚糖(CS)和聚乙烯醇(PVA)组成的聚合物基质中。一旦优化,pSPIONs 就会以三种不同浓度(1.92、3.77 和 5.54wt.%)添加到 CS/PVA/HA 糊剂中,然后通过增材制造形成支架。结果表明,在磁热疗测试中,分别含有 3.77 和 5.54wt.%pSPIONs 的支架实现了 6.6 和 7.5°C 的温度升高。使用人骨肉瘤 Saos-2 细胞的体外研究表明,与 CS/PVA/HA 支架相比,pSPIONs 的掺入显著刺激了细胞黏附、增殖和碱性磷酸酶(ALP)的表达。因此,这些结果表明,CS/PVA/HA/pSPIONs 支架中 pSPIONs 的浓度高于或等于 3.77wt.%时,有可能用于磁热疗和骨再生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/775e2ba7e38f/ijms-24-01128-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/265aa0810975/ijms-24-01128-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/683ac42c82e4/ijms-24-01128-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/6a40f445771a/ijms-24-01128-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/4f2fac0cc943/ijms-24-01128-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/464d1c236f6f/ijms-24-01128-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/172de503e2c3/ijms-24-01128-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/5e503fd891d7/ijms-24-01128-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/1034d44191b5/ijms-24-01128-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/63748975f1d0/ijms-24-01128-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/775e2ba7e38f/ijms-24-01128-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/265aa0810975/ijms-24-01128-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/683ac42c82e4/ijms-24-01128-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/6a40f445771a/ijms-24-01128-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/4f2fac0cc943/ijms-24-01128-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/464d1c236f6f/ijms-24-01128-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/172de503e2c3/ijms-24-01128-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/5e503fd891d7/ijms-24-01128-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/1034d44191b5/ijms-24-01128-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/63748975f1d0/ijms-24-01128-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/609c/9863008/775e2ba7e38f/ijms-24-01128-g010.jpg

相似文献

[1]
Preparation and In Vitro Characterization of Magnetic CS/PVA/HA/pSPIONs Scaffolds for Magnetic Hyperthermia and Bone Regeneration.

Int J Mol Sci. 2023-1-6

[2]
Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering.

Mater Sci Eng C Mater Biol Appl. 2019-10-23

[3]
Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.

J Biomater Sci Polym Ed. 2013-9-23

[4]
Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration.

J Mater Chem B. 2020-6-24

[5]
Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.

J Mater Sci Mater Med. 2020-10-31

[6]
Research of arginylglycylaspartic to promote osteogenesis of bone marrow mesenchymal cells on chitosan/hydroxyapatite scaffolds.

Biomed Mater Eng. 2014

[7]
SLS 3D Printing To Fabricate Poly(vinyl alcohol)/Hydroxyapatite Bioactive Composite Porous Scaffolds and Their Bone Defect Repair Property.

ACS Biomater Sci Eng. 2023-12-11

[8]
Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.

Biomaterials. 2006-12

[9]
Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction.

Gene. 2019-8-30

[10]
Immobilization of salvianolic acid B-loaded chitosan microspheres distributed three-dimensionally and homogeneously on the porous surface of hydroxyapatite scaffolds.

Biomed Mater. 2016-10-7

引用本文的文献

[1]
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

Bioact Mater. 2025-7-26

[2]
Polycaprolactone/Doped Bioactive Glass Composite Scaffolds for Bone Regeneration.

J Funct Biomater. 2025-6-1

[3]
Development of Scaffolds with Chitosan Magnetically Activated with Cobalt Nanoferrite: A Study on Physical-Chemical, Mechanical, Cytotoxic and Antimicrobial Behavior.

Pharmaceuticals (Basel). 2024-10-5

[4]
Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years.

ACS Omega. 2024-7-2

[5]
Advances in Biomimetic Scaffolds for Hard Tissue Surgery.

Biomimetics (Basel). 2024-5-8

[6]
Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors.

Int J Mol Sci. 2024-4-9

[7]
Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine.

Int J Mol Sci. 2024-2-28

[8]
The role of smart polymeric biomaterials in bone regeneration: a review.

Front Bioeng Biotechnol. 2023-8-17

[9]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[10]
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology.

Int J Mol Sci. 2023-2-21

本文引用的文献

[1]
A Review on Damage and Rupture Modelling for Soft Tissues.

Bioengineering (Basel). 2022-1-10

[2]
Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration.

Mater Sci Eng C Mater Biol Appl. 2021-9

[3]
Physically-cross-linked poly(vinyl alcohol) cell culture plate coatings facilitate preservation of cell-cell interactions, spheroid formation, and stemness.

J Biomed Mater Res B Appl Biomater. 2021-11

[4]
Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds.

Macromol Biosci. 2021-4

[5]
The rheology of direct and suspended extrusion bioprinting.

APL Bioeng. 2021-2-4

[6]
Scaffold-based 3D cellular models mimicking the heterogeneity of osteosarcoma stem cell niche.

Sci Rep. 2020-12-18

[7]
Tailoring of the rheological properties of bioinks to improve bioprinting and bioassembly for tissue replacement.

Biochim Biophys Acta Gen Subj. 2021-2

[8]
Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends.

Materials (Basel). 2020-6-11

[9]
3D-printed magnetic FeO/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia.

J Mater Chem B. 2014-11-21

[10]
Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review.

Biomed Mater. 2020-2-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索