Shan Eddy, Chamorro Cristina, Ferrández-Montero Ana, Martin-Rodriguez Rosa M, Ferrari Begoña, Sanchez-Herencia Antonio Javier, Virto Leire, Marín María José, Figuero Elena, Sanz Mariano
Section of Periodontology, Faculty of Odontology, Complutense University of Madrid, 28040 Madrid, Spain.
Etiology and Therapy of Periodontal and Peri-implant Diseases (ETEP) Research Group, Complutense University of Madrid, 28040 Madrid, Spain.
J Funct Biomater. 2025 Jun 12;16(6):218. doi: 10.3390/jfb16060218.
This study evaluated the biological performance in vitro of two 3D-printed hydroxyapatite (HA) and polylactic acid (PLA) composite scaffolds with two different infill densities (50% [HA-PLA50] and 70% [HA-PLA70]). Comparative analysis using MG-63 cell cultures evaluated the following: (1) integrity after exposure to various sterilization methods; (2) cell viability; (3) morphological characteristics; (4) cell proliferation; (5) cytotoxicity; (6) gene expression; and (7) protein synthesis. Ultraviolet radiation was the preferred sterilization method. Both scaffolds maintained adequate cell viability and proliferation over 7 days without significant differences in cytotoxicity. Notably, HA-PLA50 scaffolds demonstrated superior osteogenic potential, showing a significantly higher expression of collagen type I (COL1A1) and an increased synthesis of interleukins 6 and 8 (IL-6, IL-8) compared to HA-PLA70 scaffolds. While both scaffold types supported robust cell growth, the HA-PLA50 formulation exhibited enhanced bioactivity, suggesting a potential advantage for bone tissue engineering applications. These findings provide important insights for optimizing 3D-printed bone graft substitutes.
本研究评估了两种具有不同填充密度(50%[HA-PLA50]和70%[HA-PLA70])的3D打印羟基磷灰石(HA)和聚乳酸(PLA)复合支架的体外生物学性能。使用MG-63细胞培养物进行的比较分析评估了以下方面:(1)暴露于各种灭菌方法后的完整性;(2)细胞活力;(3)形态特征;(4)细胞增殖;(5)细胞毒性;(6)基因表达;以及(7)蛋白质合成。紫外线辐射是首选的灭菌方法。两种支架在7天内均保持了足够的细胞活力和增殖能力,细胞毒性无显著差异。值得注意的是,与HA-PLA70支架相比,HA-PLA50支架表现出更强的成骨潜力,I型胶原蛋白(COL1A1)的表达显著更高,白细胞介素6和8(IL-6、IL-8)的合成增加。虽然两种支架类型都支持强劲的细胞生长,但HA-PLA50配方表现出增强的生物活性,这表明其在骨组织工程应用中具有潜在优势。这些发现为优化3D打印骨移植替代物提供了重要见解。