Sil Moumita, Dalui Shauryabrota, Choudhury Abhishek, Goswami Arunava, Bhattacharyya Arindam
Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108, West Bengal, India.
Department of Zoology, University of Calcutta, Ballygunge Science College Campus, 35, Ballygunge Circular Rd, Ballygunge, Kolkata, 700019, West Bengal, India.
World J Microbiol Biotechnol. 2025 Jun 25;41(7):222. doi: 10.1007/s11274-025-04428-1.
Antimicrobial resistance (AMR) poses a dire global threat, with bacterial resistance predicted to cause 10 million deaths annually by 2050 if left unaddressed. Among the leading contributors, Escherichia coli ranks as a critical priority pathogen, driving the need for innovative strategies to combat resistance. This study addresses the urgent demand by exploring the antibacterial efficacy and mode of action of biogenic silver nanoparticles (AgNPs) synthesized using Emblica officinalis. AgNPs, characterized as spherical (average size: 46.5 nm) with high stability (zeta potential: -39.02 mV) and photoluminescent properties, exhibited potent antimicrobial activity, with minimum inhibitory concentrations ranging from 9.76 to 19.53 ppm. RNA-seq analysis revealed substantial metabolic and regulatory shifts in E. coli upon AgNP exposure, including upregulation of arginine biosynthesis, metabolism, and transport genes (e.g., argC, argB, argA, artJ), which supported ATP production via the Arginine Deiminase (ADI) pathway and enhanced stress resilience through polyamine synthesis. Upregulation of carA showed the interconnectedness of arginine and pyrimidine biosynthesis under energy-depleted conditions. Simultaneously, downregulation of motility-related genes (flhDC, fliC) disrupted flagellar biosynthesis, rendering E. coli non-motile and more vulnerable to oxidative stress. This was linked to reduced cAMP-CRP complex activity and arginine-sodium competition at flagellar motors. Structural analyses confirmed a face-centered cubic crystalline structure and functionalization with biomolecules, enhancing biocompatibility. Cytotoxicity assays on MDA-MB-231 cells demonstrated dose-dependent reductions in cell viability, with manageable safety profiles. These findings highlight biogenic AgNPs as eco-friendly, effective antimicrobial agents exploiting bacterial metabolic disruption and impaired motility to counter resistance, offering promising solutions to mitigate the AMR crisis.
抗菌耐药性(AMR)对全球构成了严峻威胁,如果不加以应对,预计到2050年,细菌耐药性每年将导致1000万人死亡。在主要促成因素中,大肠杆菌是关键的优先病原体,这推动了对抗耐药性创新策略的需求。本研究通过探索使用余甘子合成的生物源银纳米颗粒(AgNPs)的抗菌效果和作用方式,满足了这一迫切需求。AgNPs呈球形(平均尺寸:46.5纳米),具有高稳定性(ζ电位:-39.02毫伏)和光致发光特性,表现出强大的抗菌活性,最低抑菌浓度范围为9.76至19.53 ppm。RNA测序分析显示,AgNP暴露后大肠杆菌发生了大量代谢和调控变化,包括精氨酸生物合成、代谢和转运基因(如argC、argB、argA、artJ)的上调,这些基因通过精氨酸脱亚胺酶(ADI)途径支持ATP生成,并通过多胺合成增强应激恢复能力。carA的上调表明在能量耗尽条件下精氨酸和嘧啶生物合成的相互联系。同时,与运动相关基因(flhDC、fliC)的下调破坏了鞭毛生物合成,使大肠杆菌失去运动能力,更容易受到氧化应激的影响。这与鞭毛马达处cAMP-CRP复合物活性降低和精氨酸-钠竞争有关。结构分析证实了面心立方晶体结构以及生物分子功能化,增强了生物相容性。对MDA-MB-231细胞的细胞毒性试验表明,细胞活力呈剂量依赖性降低,安全性可控。这些发现突出了生物源AgNPs作为生态友好、有效的抗菌剂,通过利用细菌代谢破坏和运动能力受损来对抗耐药性,为缓解AMR危机提供了有前景的解决方案。