Solmaz Özgen Arslan, Tasci Burak
Clinic of Medical Pathology, Elazig Fethi Sekin City Hospital, Elazig 23280, Turkey.
Vocational School of Technical Sciences, Firat University, Elazig 23119, Turkey.
Diagnostics (Basel). 2025 Jun 13;15(12):1507. doi: 10.3390/diagnostics15121507.
Intestinal metaplasia (IM) is a precancerous gastric condition that requires accurate histopathological diagnosis to enable early intervention and cancer prevention. Traditional evaluation of H&E-stained tissue slides can be labor-intensive and prone to interobserver variability. Recent advances in deep learning, particularly transformer-based models, offer promising tools for improving diagnostic accuracy. We propose ViSwNeXtNet, a novel patch-wise ensemble framework that integrates three transformer-based architectures-ConvNeXt-Tiny, Swin-Tiny, and ViT-Base-for deep feature extraction. Features from each model (12,288 per model) were concatenated into a 36,864-dimensional vector and refined using iterative neighborhood component analysis (INCA) to select the most discriminative 565 features. A quadratic SVM classifier was trained using these selected features. The model was evaluated on two datasets: (1) a custom-collected dataset consisting of 516 intestinal metaplasia cases and 521 control cases, and (2) the public GasHisSDB dataset, which includes 20,160 normal and 13,124 abnormal H&E-stained image patches of size 160 × 160 pixels. On the collected dataset, the proposed method achieved 94.41% accuracy, 94.63% sensitivity, and 94.40% F1 score. On the GasHisSDB dataset, it reached 99.20% accuracy, 99.39% sensitivity, and 99.16% F1 score, outperforming individual backbone models and demonstrating strong generalizability across datasets. ViSwNeXtNet successfully combines local, regional, and global representations of tissue structure through an ensemble of transformer-based models. The addition of INCA-based feature selection significantly enhances classification performance while reducing dimensionality. These findings suggest the method's potential for integration into clinical pathology workflows. Future work will focus on multiclass classification, multicenter validation, and integration of explainable AI techniques.
肠化生(IM)是一种胃癌前状态,需要准确的组织病理学诊断以实现早期干预和癌症预防。对苏木精-伊红(H&E)染色的组织切片进行传统评估可能劳动强度大且容易出现观察者间差异。深度学习的最新进展,特别是基于Transformer的模型,为提高诊断准确性提供了有前景的工具。我们提出了ViSwNeXtNet,这是一种新颖的逐块集成框架,它集成了三种基于Transformer的架构——ConvNeXt-Tiny、Swin-Tiny和ViT-Base——用于深度特征提取。每个模型的特征(每个模型12,288个)被连接成一个36,864维向量,并使用迭代邻域成分分析(INCA)进行优化,以选择最具区分性的565个特征。使用这些选定的特征训练了一个二次支持向量机(SVM)分类器。该模型在两个数据集上进行了评估:(1)一个自定义收集的数据集,由516例肠化生病例和521例对照病例组成;(2)公共GasHisSDB数据集,其中包括20,160个正常和13,124个异常的160×160像素大小的H&E染色图像块。在所收集的数据集上,所提出的方法实现了94.41%的准确率、94.63%的灵敏度和94.40%的F1分数。在GasHisSDB数据集上,它达到了99.20%的准确率、99.39%的灵敏度和99.16%的F1分数,优于单个主干模型,并在跨数据集上表现出很强的泛化能力。ViSwNeXtNet通过基于Transformer的模型集成成功地结合了组织结构的局部、区域和全局表示。基于INCA的特征选择的加入显著提高了分类性能,同时降低了维度。这些发现表明该方法有潜力整合到临床病理学工作流程中。未来的工作将集中在多类分类、多中心验证以及可解释人工智能技术的整合上。