Alhassan Afnan M, Altmami Nouf I
Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia.
Diagnostics (Basel). 2025 Jun 14;15(12):1516. doi: 10.3390/diagnostics15121516.
Alzheimer's disease (AD) is the leading cause of dementia and is characterized by progressive neurodegeneration, resulting in cognitive impairment and structural brain changes. Although no curative treatment exists, pharmacological therapies like cholinesterase inhibitors and NMDA receptor antagonists may deliver symptomatic relief and modestly delay disease progression. Structural magnetic resonance imaging (sMRI) is a commonly utilized modality for the diagnosis of brain neurological diseases and may indicate abnormalities. However, improving the recognition of discriminative characteristics is the primary difficulty in diagnosis utilizing sMRI. : To tackle this problem, the Fuzzy Optimized Attention Network with Multi-Instance Deep Learning (FOA-MIDL) system is presented for the prodromal phase of mild cognitive impairment (MCI) and the initial detection of AD. An attention technique to estimate the weight of every case is presented: the fuzzy salp swarm algorithm (FSSA). The swarming actions of salps in oceans serve as the inspiration for the FSSA. When moving, the nutrient gradients influence the movement of leading salps during global search exploration, while the followers fully explore their local environment to adjust the classifiers' parameters. To balance the relative contributions of every patch and produce a global distinct weighted image for the entire brain framework, the attention multi-instance learning (MIL) pooling procedure is developed. Attention-aware global classifiers are presented to improve the understanding of the integral characteristics and form judgments for AD-related categorization. The Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker, and Lifestyle Flagship Study on Ageing (AIBL) provided the two datasets (ADNI and AIBL) utilized in this work. Compared to many cutting-edge techniques, the findings demonstrate that the FOA-MIDL system may determine discriminative pathological areas and offer improved classification efficacy in terms of sensitivity (SEN), specificity (SPE), and accuracy.
阿尔茨海默病(AD)是痴呆症的主要病因,其特征是进行性神经退行性变,导致认知障碍和脑部结构改变。尽管目前尚无治愈性治疗方法,但胆碱酯酶抑制剂和N-甲基-D-天冬氨酸(NMDA)受体拮抗剂等药物疗法可能会缓解症状并适度延缓疾病进展。结构磁共振成像(sMRI)是诊断脑部神经疾病常用的一种方法,可能会显示出异常情况。然而,提高对判别特征的识别是利用sMRI进行诊断的主要难点。为了解决这个问题,本文提出了一种基于多实例深度学习的模糊优化注意力网络(FOA-MIDL)系统,用于轻度认知障碍(MCI)的前驱期和AD的早期检测。提出了一种注意力技术来估计每个病例的权重:模糊樽海鞘算法(FSSA)。海洋中樽海鞘的群体行为是FSSA的灵感来源。在移动过程中,营养梯度在全局搜索探索中影响领先樽海鞘的移动,而跟随者则充分探索其局部环境以调整分类器的参数。为了平衡每个斑块的相对贡献并为整个脑框架生成一个全局独特的加权图像,开发了注意力多实例学习(MIL)池化程序。提出了注意力感知全局分类器,以提高对整体特征的理解并形成与AD相关分类的判断。阿尔茨海默病神经影像倡议(ADNI)和澳大利亚衰老影像、生物标志物和生活方式旗舰研究(AIBL)提供了本研究中使用的两个数据集(ADNI和AIBL)。与许多前沿技术相比,研究结果表明,FOA-MIDL系统可以确定有判别力的病理区域,并在敏感性(SEN)、特异性(SPE)和准确性方面提供更高的分类效能。