Suppr超能文献

基于全切片图像的注意力引导深度多实例学习网络的癌症生存预测。

Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks.

机构信息

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA.

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA.

出版信息

Med Image Anal. 2020 Oct;65:101789. doi: 10.1016/j.media.2020.101789. Epub 2020 Jul 19.

Abstract

Traditional image-based survival prediction models rely on discriminative patch labeling which make those methods not scalable to extend to large datasets. Recent studies have shown Multiple Instance Learning (MIL) framework is useful for histopathological images when no annotations are available in classification task. Different to the current image-based survival models that limit to key patches or clusters derived from Whole Slide Images (WSIs), we propose Deep Attention Multiple Instance Survival Learning (DeepAttnMISL) by introducing both siamese MI-FCN and attention-based MIL pooling to efficiently learn imaging features from the WSI and then aggregate WSI-level information to patient-level. Attention-based aggregation is more flexible and adaptive than aggregation techniques in recent survival models. We evaluated our methods on two large cancer whole slide images datasets and our results suggest that the proposed approach is more effective and suitable for large datasets and has better interpretability in locating important patterns and features that contribute to accurate cancer survival predictions. The proposed framework can also be used to assess individual patient's risk and thus assisting in delivering personalized medicine.

摘要

传统的基于图像的生存预测模型依赖于有判别力的斑块标记,这使得这些方法无法扩展到大型数据集。最近的研究表明,在分类任务中没有注释的情况下,多实例学习(MIL)框架对于组织病理学图像是有用的。与当前基于图像的生存模型不同,这些模型仅限于从全切片图像(WSI)中提取的关键斑块或聚类,我们通过引入孪生 MI-FCN 和基于注意力的 MIL 池化,提出了深度注意多实例生存学习(DeepAttnMISL),以便从 WSI 中高效地学习成像特征,然后将 WSI 级别的信息聚合到患者级别。与最近的生存模型中的聚合技术相比,基于注意力的聚合更加灵活和自适应。我们在两个大型癌症全切片图像数据集上评估了我们的方法,结果表明,所提出的方法在处理大型数据集时更有效,并且在定位有助于准确癌症生存预测的重要模式和特征方面具有更好的可解释性。该框架还可用于评估个体患者的风险,从而有助于提供个性化医疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验