Suppr超能文献

基于结构 MRI 的阿尔茨海默病诊断的双重注意多实例深度学习。

Dual Attention Multi-Instance Deep Learning for Alzheimer's Disease Diagnosis With Structural MRI.

出版信息

IEEE Trans Med Imaging. 2021 Sep;40(9):2354-2366. doi: 10.1109/TMI.2021.3077079. Epub 2021 Aug 31.

Abstract

Structural magnetic resonance imaging (sMRI) is widely used for the brain neurological disease diagnosis, which could reflect the variations of brain. However, due to the local brain atrophy, only a few regions in sMRI scans have obvious structural changes, which are highly correlative with pathological features. Hence, the key challenge of sMRI-based brain disease diagnosis is to enhance the identification of discriminative features. To address this issue, we propose a dual attention multi-instance deep learning network (DA-MIDL) for the early diagnosis of Alzheimer's disease (AD) and its prodromal stage mild cognitive impairment (MCI). Specifically, DA-MIDL consists of three primary components: 1) the Patch-Nets with spatial attention blocks for extracting discriminative features within each sMRI patch whilst enhancing the features of abnormally changed micro-structures in the cerebrum, 2) an attention multi-instance learning (MIL) pooling operation for balancing the relative contribution of each patch and yield a global different weighted representation for the whole brain structure, and 3) an attention-aware global classifier for further learning the integral features and making the AD-related classification decisions. Our proposed DA-MIDL model is evaluated on the baseline sMRI scans of 1689 subjects from two independent datasets (i.e., ADNI and AIBL). The experimental results show that our DA-MIDL model can identify discriminative pathological locations and achieve better classification performance in terms of accuracy and generalizability, compared with several state-of-the-art methods.

摘要

结构磁共振成像 (sMRI) 广泛用于脑神经系统疾病的诊断,可以反映大脑的变化。然而,由于局部脑萎缩,sMRI 扫描中只有少数区域有明显的结构变化,这些变化与病理特征高度相关。因此,基于 sMRI 的脑疾病诊断的关键挑战是增强识别有区别的特征。为了解决这个问题,我们提出了一种双注意多实例深度学习网络 (DA-MIDL),用于阿尔茨海默病 (AD) 及其前驱期轻度认知障碍 (MCI) 的早期诊断。具体来说,DA-MIDL 由三个主要部分组成:1)带有空间注意力块的 Patch-Nets,用于在每个 sMRI 斑块内提取有区别的特征,同时增强大脑中异常变化的微观结构的特征,2)注意力多实例学习 (MIL) 池化操作,用于平衡每个斑块的相对贡献,并为整个大脑结构生成一个全局不同的加权表示,3)注意力感知全局分类器,用于进一步学习整体特征并做出与 AD 相关的分类决策。我们提出的 DA-MIDL 模型在来自两个独立数据集 (即 ADNI 和 AIBL) 的 1689 名受试者的基线 sMRI 扫描上进行了评估。实验结果表明,与几种最先进的方法相比,我们的 DA-MIDL 模型可以识别有区别的病理位置,并在准确性和泛化能力方面实现更好的分类性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验