Hay Mele Bruno, Rossetti Federica, Andreotti Giuseppina, Cubellis Maria Vittoria, Guerriero Simone, Monticelli Maria
Department of Biology, University of Napoli "Federico II", 80126 Napoli, Italy.
Institute of Biomolecular Chemistry (ICB)-National Council Research of Italy, 80078 Pozzuoli, Italy.
Int J Mol Sci. 2025 Jun 17;26(12):5802. doi: 10.3390/ijms26125802.
Fabry disease is a rare genetic disorder caused by deficient activity of the lysosomal enzyme alpha-galactosidase A (AGAL), resulting in the accumulation of globotriaosylceramides (Gb3) in tissues and organs. This buildup leads to progressive, multi-systemic complications that severely impact quality of life and can be life-threatening. Interpreting the functional consequences of missense variants in the gene remains a significant challenge, especially in rare diseases where experimental evidence is scarce. In this study, we present an integrative computational framework that combines structural, interaction, pathogenicity, and stability data from both in silico tools and experimental sources, enriched through expert curation and structural analysis. Given the clinical relevance of pharmacological chaperones in Fabry disease, we focus in particular on the structural characteristics of variants classified as "amenable" to such treatments. Our multidimensional analysis-using tools such as AlphaMissense, EVE, FoldX, and ChimeraX-identifies key molecular features that distinguish amenable from non-amenable variants. We find that amenable mutations tend to preserve protein stability, while non-amenable ones are associated with structural destabilisation. By comparing AlphaMissense with alternative predictors rooted in evolutionary (EVE) and thermodynamic (FoldX) models, we explore the relative contribution of different biological paradigms to variant classification. Additionally, the investigation of outlier variants-where AlphaMissense predictions diverge from clinical annotations-highlights candidates for further experimental validation. These findings demonstrate how combining structural bioinformatics with machine learning-based predictions can improve missense variant interpretation and support precision medicine in rare genetic disorders.
法布里病是一种罕见的遗传性疾病,由溶酶体酶α-半乳糖苷酶A(AGAL)活性不足引起,导致组织和器官中球三糖神经酰胺(Gb3)的积累。这种积累会导致进行性多系统并发症,严重影响生活质量,甚至可能危及生命。解读该基因错义变体的功能后果仍然是一项重大挑战,尤其是在实验证据稀缺的罕见疾病中。在本研究中,我们提出了一个综合计算框架,该框架结合了来自计算机工具和实验来源的结构、相互作用、致病性和稳定性数据,并通过专家整理和结构分析进行了丰富。鉴于药理伴侣在法布里病中的临床相关性,我们特别关注被归类为适合此类治疗的变体的结构特征。我们使用AlphaMissense、EVE、FoldX和ChimeraX等工具进行的多维分析确定了区分适合和不适合变体的关键分子特征。我们发现,适合的突变倾向于保持蛋白质稳定性,而不适合的突变则与结构不稳定有关。通过将AlphaMissense与基于进化(EVE)和热力学(FoldX)模型的替代预测器进行比较,我们探讨了不同生物学范式对变体分类的相对贡献。此外,对异常变体的研究(即AlphaMissense预测与临床注释不同的情况)突出了需要进一步实验验证的候选者。这些发现表明,将结构生物信息学与基于机器学习的预测相结合,可以改善错义变体的解读,并为罕见遗传性疾病的精准医学提供支持。