Shanmugam Hemalatha, Airen Lavanya, Rawat Saumya
Department of Research, PanScience Innovations, New Delhi, India.
Indian J Crit Care Med. 2025 Jun;29(6):516-524. doi: 10.5005/jp-journals-10071-24986. Epub 2025 Jun 5.
Sepsis, a dangerous condition where infection triggers an abnormal host response, requires quick detection to save lives. While traditional detection methods often fall short, artificial intelligence (AI) and its subsets, machine learning (ML) and deep learning (DL), offer new hope. This scoping review inspects the ML and DL models that are published in the period from 2022 to 2025 for sepsis prediction using electronic health records (EHRs). It aims to provide a comprehensive update for clinicians on the proposed sepsis prediction models, features used, data processing methods, model performance and clinical integration.
Our March 11, 2025, PubMed search identified thirteen relevant studies that developed ML or DL models for predicting adult sepsis.
Most researchers used supervised ML, with some exploring DL and hybrid approaches. The models relied on standard clinical data like vital signs and laboratory results, similar to traditional scoring methods. Some models utilized demographic information and electrocardiographic (ECG) readings as features to predict sepsis. Performance metrics such as area under the receiver operating characteristic (AUROC) curve, specificity, and sensitivity showed that these ML and DL models often surpassed the ability of both human clinicians and traditional scoring systems in predicting sepsis. Notable innovations included federated learning and model integration with EHR systems and physiological sensors.
While AI shows promise for early sepsis detection, successful clinical adoption will require real-world testing and clear model interpretability. Future work should focus on standardizing these tools for practical medical use.
Shanmugam H, Airen L, Rawat S. Machine Learning and Deep Learning Models for Early Sepsis Prediction: A Scoping Review. Indian J Crit Care Med 2025;29(6):516-524.
脓毒症是一种感染引发机体异常反应的危险病症,需要快速检测以挽救生命。传统检测方法往往存在不足,而人工智能(AI)及其分支机器学习(ML)和深度学习(DL)带来了新的希望。本综述考察了2022年至2025年期间发表的利用电子健康记录(EHR)进行脓毒症预测的ML和DL模型。其目的是为临床医生提供关于脓毒症预测模型、所用特征、数据处理方法、模型性能及临床整合方面的全面更新。
我们于2025年3月11日在PubMed数据库进行检索,确定了13项开发用于预测成人脓毒症的ML或DL模型的相关研究。
大多数研究人员使用监督式ML,部分研究探索了DL和混合方法。这些模型依赖于生命体征和实验室检查结果等标准临床数据,与传统评分方法类似。一些模型利用人口统计学信息和心电图(ECG)读数作为特征来预测脓毒症。受试者操作特征曲线下面积(AUROC)、特异性和敏感性等性能指标表明,这些ML和DL模型在预测脓毒症方面往往超过了人类临床医生和传统评分系统的能力。显著的创新包括联邦学习以及与EHR系统和生理传感器的模型整合。
虽然AI在早期脓毒症检测方面显示出前景,但要成功应用于临床还需要进行实际测试并确保模型具有清晰的可解释性。未来的工作应聚焦于将这些工具标准化以用于实际医疗。
Shanmugam H, Airen L, Rawat S. Machine Learning and Deep Learning Models for Early Sepsis Prediction: A Scoping Review. Indian J Crit Care Med 2025;29(6):516 - 524.