Suppr超能文献

用于跨主题网络欺凌检测的主题对抗神经网络

Topic adversarial neural network for cross-topic cyberbullying detection.

作者信息

Xiong Shufeng, Liu Wenzhuo, Wang Bingkun, Che Yinchao, Shi Lei

机构信息

College of Information and Management Science, Henan Agricultural University, Zhengzhou, China.

School of Information Engineering, Zhengzhou College of Finance and Economics, Zhengzhou, China.

出版信息

PeerJ Comput Sci. 2025 Jun 19;11:e2942. doi: 10.7717/peerj-cs.2942. eCollection 2025.

Abstract

With the proliferation of social media, cyberbullying has emerged as a pervasive threat, causing significant psychological harm to individuals and undermining social cohesion. Its linguistic expressions vary widely across topics, complicating automatic detection efforts. Most existing methods struggle to generalize across diverse online contexts due to their reliance on topic-specific features. To address this issue, we propose the Topic Adversarial Neural Network (TANN), a novel end-to-end framework for topic-invariant cyberbullying detection. TANN integrates a multi-level feature extractor with a topic discriminator and a cyberbullying detector. It leverages adversarial training to disentangle topic-related information while retaining universal linguistic cues relevant to harmful content. We construct a multi-topic dataset from major Chinese social media platforms, such as Weibo and Tieba, to evaluate the generalization performance of TANN in real-world scenarios. Experimental results demonstrate that TANN outperforms existing methods in cross-topic detection tasks, significantly improving robustness and accuracy. This work advances cross-topic cyberbullying detection by introducing a scalable solution that mitigates topic interference and enables reliable performance across dynamic online environments.

摘要

随着社交媒体的普及,网络欺凌已成为一种普遍存在的威胁,给个人造成了严重的心理伤害,并破坏了社会凝聚力。其语言表达在不同主题间差异很大,这使得自动检测工作变得复杂。由于大多数现有方法依赖于特定主题的特征,因此难以在不同的在线环境中进行泛化。为了解决这个问题,我们提出了主题对抗神经网络(TANN),这是一种用于主题不变的网络欺凌检测的新型端到端框架。TANN将多级特征提取器与主题判别器和网络欺凌检测器集成在一起。它利用对抗训练来分离与主题相关的信息,同时保留与有害内容相关的通用语言线索。我们从微博和贴吧等主要中文社交媒体平台构建了一个多主题数据集,以评估TANN在现实场景中的泛化性能。实验结果表明,TANN在跨主题检测任务中优于现有方法,显著提高了鲁棒性和准确性。这项工作通过引入一种可扩展的解决方案推进了跨主题网络欺凌检测,该解决方案减轻了主题干扰,并在动态在线环境中实现了可靠的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d16/12193452/f5a54712a5c8/peerj-cs-11-2942-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验