Suppr超能文献

低分辨率下的鱼类物种识别——基于增强型超分辨率生成对抗网络(ESRGAN)、YOLO和VGG-16的研究

Fish species identification on low resolution-a study with enhanced super-resolution generative adversarial network (ESRGAN), YOLO and VGG-16.

作者信息

Adhikary Subhrangshu, Banerjee Saikat, Singh Rajani, Dwivedi Ashutosh Dhar

机构信息

Research and Development, Spiraldevs Automation Industries Pvt. Ltd., Raiganj, West Bengal, India.

Remote Sensing, Aerosys Defence and Aerospace Pvt. Ltd., Pune, Maharashtra, India.

出版信息

PeerJ Comput Sci. 2025 Apr 30;11:e2860. doi: 10.7717/peerj-cs.2860. eCollection 2025.

Abstract

An intelligent detection and recognition model for the fish species from camera footage is urgently required as fishery contributes to a large portion of the world economy, and these kinds of advanced models can aid fishermen on a large scale. Such models incorporating a pick-and-place machine can be beneficial to sorting different fish species in bulk without human intervention, significantly reducing costs for large-scale fishing industries. Existing methods for detecting and recognizing fish species have many limitations, such as limited scalability, detection accuracy, failure to detect multiple species, degraded performance at a lower resolution, or pinpointing the exact location of the fish. Modifying the head of a compelling deep learning model, namely VGG-16, with pre-trained weights, can be used to detect both the species of the fish and find the exact location of the fish in an image by implementing a modified You Only Look Once (YOLO) to incorporate the bounding box regression head. We have proposed using the Enhanced Super Resolution Generative Adversarial Network (ESRGAN) algorithm and the proposed neural network to amplify the image resolution by a factor of 4. With this method, an overall detection accuracy of 96.5% has been obtained. The experiment has been conducted based on a total of 9,460 images spread across nine species. After further improving the model, a pick-and-place machine could be integrated to quickly sort the fish according to their species in different large-scale fish industries.

摘要

由于渔业在世界经济中占很大比重,因此迫切需要一种用于从摄像头拍摄的画面中智能检测和识别鱼类品种的模型,这类先进模型可在很大程度上帮助渔民。这种结合了抓取和放置机器的模型有助于在无需人工干预的情况下批量分拣不同鱼类品种,显著降低大型渔业的成本。现有的鱼类品种检测和识别方法存在许多局限性,例如可扩展性有限、检测精度不高、无法检测多个品种、在低分辨率下性能下降或难以确定鱼的确切位置。通过对具有预训练权重的强大深度学习模型VGG - 16的头部进行修改,利用改进的单阶段多框检测(YOLO)算法加入边界框回归头部,可用于检测鱼的品种并在图像中找到鱼的确切位置。我们提出使用增强型超分辨率生成对抗网络(ESRGAN)算法和所提出的神经网络将图像分辨率放大4倍。通过这种方法,已获得96.5%的总体检测准确率。该实验基于总共9460张分布在九个品种的图像进行。在进一步改进模型后,可集成一个抓取和放置机器,以便在不同的大型渔业中根据鱼的品种快速分拣鱼。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca3/12192931/60b79b742801/peerj-cs-11-2860-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验