Frampton Eleanor S, Clarke Michael, Edmondson Matthew, Gray Ailish, Bradford Jonathan, Warwick Liv, Pearce Nicholas, Champness Neil R, Saywell Alex
MAX IV Laboratory, Lund University, 22100 Lund, Sweden.
University of Nottingham, School of Physics and Astronomy, University Park, NG7 2RD Nottingham, U.K.
ACS Appl Nano Mater. 2025 Jun 10;8(24):12608-12618. doi: 10.1021/acsanm.5c01525. eCollection 2025 Jun 20.
Surface-confined synthesis provides alternative reaction pathways to those utilized within solution-phase chemistry and offers a route to extended molecular architectures with nanoscale dimensions and fascinating magnetic, electronic, and catalytic properties. However, these reaction pathways can be complex multistep processes, containing multiple reactive intermediates. Optimizing the selectivity and efficiency of such synthetic routes should be underpinned by detailed mechanistic insight, which requires submolecular spatial resolution in combination with details of chemical evolution throughout the reaction process. A key challenge is the application of an experimental methodology that allows in-depth study of multistep reactions. Here, we combine the spatial resolution of scanning tunneling microscopy with temperature-programmed photoelectron spectroscopies and present a comprehensive characterization of a multistep on-surface reaction utilizing a brominated porphyrin species. The porphyrin species employed is a highly functionalizable "molecular building block" from which nanostructured materials can be built, and within this work we identify key differences between the reaction on Cu(111) and Au(111). Intermolecular Ullmann-type coupling as well as intramolecular ring-closing and self-metalation are observed: specifically, on Au(111) we characterize self-metalation within covalently coupled assemblies of ring-closed TPP. Our results highlight the differing reactivity of Au(111) and Cu(111) and the strong influence of the substrate upon the reaction pathway and preferred products, and we provide spectroscopic and topographical characterization for all reaction steps.
表面受限合成提供了与溶液相化学中所采用的反应途径不同的反应路径,并为具有纳米级尺寸以及迷人的磁性、电子和催化特性的扩展分子结构提供了一条途径。然而,这些反应路径可能是复杂的多步过程,包含多个反应中间体。优化此类合成路线的选择性和效率应以详细的机理洞察为基础,这需要亚分子空间分辨率以及整个反应过程中化学演化的细节。一个关键挑战是应用一种能够深入研究多步反应的实验方法。在这里,我们将扫描隧道显微镜的空间分辨率与程序升温光电子能谱相结合,对利用溴化卟啉物种的多步表面反应进行了全面表征。所使用的卟啉物种是一种高度可功能化的“分子构建块”,可以从中构建纳米结构材料,在这项工作中,我们确定了在Cu(111)和Au(111)上反应的关键差异。观察到分子间的乌尔曼型偶联以及分子内环化和自金属化:具体而言,在Au(111)上,我们表征了闭环TPP共价偶联组装体中的自金属化。我们的结果突出了Au(111)和Cu(111)不同的反应活性以及底物对反应途径和优选产物的强烈影响,并且我们为所有反应步骤提供了光谱和形貌表征。