Simantiris Georgios, Bacharidis Konstantinos, Panagiotakis Costas
Department of Management Science and Technology, Hellenic Mediterranean University, 72100 Agios Nikolaos, Greece.
Institute of Computer Science, FORTH (Foundation for Research & Technology-Hellas), 70013 Heraklion, Greece.
Sensors (Basel). 2025 Jun 6;25(12):3586. doi: 10.3390/s25123586.
We present a novel methodology for generating and filtering synthetic Unmanned Aerial Vehicle (UAV) flood imagery to enhance the generalization capabilities of segmentation models. Our framework combines text-to-image synthesis and image inpainting, using curated prompts and real-world segmentation masks to produce diverse and realistic flood scenes. To overcome the lack of human annotations, we employ an unsupervised pseudo-labeling method that generates segmentation masks based on floodwater appearance characteristics. We further introduce a filtering stage based on outlier detection in feature space to improve the realism of the synthetic dataset. Experimental results on five state-of-the-art flood segmentation models show that synthetic data can closely match real data in training performance, and combining both sources improves model robustness by 1-7%. Finally, we investigate the impact of prompt design on the visual fidelity of generated images and provide qualitative and quantitative evidence of distributional similarity between real and synthetic data.
我们提出了一种新颖的方法,用于生成和过滤合成无人机洪水图像,以增强分割模型的泛化能力。我们的框架结合了文本到图像合成和图像修复技术,使用精心策划的提示和真实世界的分割掩码来生成多样且逼真的洪水场景。为了克服人工标注的不足,我们采用了一种无监督伪标签方法,该方法基于洪水外观特征生成分割掩码。我们还引入了一个基于特征空间异常检测的过滤阶段,以提高合成数据集的真实感。在五个先进的洪水分割模型上的实验结果表明,合成数据在训练性能上可以与真实数据紧密匹配,并且将两者结合可将模型鲁棒性提高1%至7%。最后,我们研究了提示设计对生成图像视觉保真度的影响,并提供了真实数据与合成数据之间分布相似性的定性和定量证据。