Wang Hai, Shao Zhiwei, Shen Kuiyuan, Bateer Buhe, Ren Fushen, Qi Xiaowen
Bohai Rim Energy Research Institute, Northeast Petroleum University, Qinhuangdao 066004, China.
Department Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
Polymers (Basel). 2025 Jun 16;17(12):1664. doi: 10.3390/polym17121664.
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE's mechanical stability, PTFE's lubricity, and PVA's dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 °C and enabling energy dissipation. All composites exhibit hydrophobicity, with optimal formulations (UPP3/UPP4) reaching superhydrophobicity. Tribological testing under varied loads and frequencies reveals low friction, where UPP1 achieves a COF of 0.043 and wear rate below 1.5 × 10 mm/(N·m) under low-load conditions. UHMWPE oxidative degradation forming carboxylic acids at the interface (C=O at 289 eV, C-O at 286 eV). Formation of tungsten oxides (WO/WO), carbides (WC), and transfer films on steel counterparts. A four-step tribochemical reaction pathway is established. PVA promotes uniform transfer films, while PTFE lamellar peeling and UHMWPE chain stability enable sustained lubrication. Carbon-rich stratified accumulations under high-load/speed increase COF via abrasive effects. The composites demonstrate exceptional biocompatibility and provide a scalable solution for biomedical and industrial tribological applications.
本研究通过热压烧结开发了新型超疏水超高分子量聚乙烯/聚四氟乙烯/聚乙烯醇复合材料,以实现超低摩擦和增强耐磨性。三元体系协同结合了超高分子量聚乙烯的机械稳定性、聚四氟乙烯的润滑性以及聚乙烯醇的分散/粘结能力。结果表明,聚四氟乙烯破坏了超高分子量聚乙烯的结晶,使熔点降低2.77°C并实现能量耗散。所有复合材料均表现出疏水性,最佳配方(UPP3/UPP4)达到超疏水性。在不同载荷和频率下的摩擦学测试显示出低摩擦,其中UPP1在低载荷条件下的摩擦系数为0.043,磨损率低于1.5×10⁻⁶mm³/(N·m)。超高分子量聚乙烯在界面处发生氧化降解形成羧酸(289eV处的C=O,286eV处的C-O)。在钢配对体上形成氧化钨(WO/WO₃)、碳化物(WC)和转移膜。建立了一个四步摩擦化学反应途径。聚乙烯醇促进均匀的转移膜形成,而聚四氟乙烯的片状剥离和超高分子量聚乙烯链的稳定性实现了持续润滑。高载荷/速度下富碳分层堆积通过磨料作用增加摩擦系数。这些复合材料表现出优异的生物相容性,并为生物医学和工业摩擦学应用提供了一种可扩展的解决方案。