Li Yulin, He Ruiying, Huang Yu, Zhang Tinglin, Xiao Lan, Xiao Yin, Liu Haifeng, Bai He, Wu Shiyong, Xue Minghao, Qiang Huifen, Wu Yan, Li Meng, Yin Chuan, Gao Jie
The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China.
Mater Today Bio. 2025 Jun 6;33:101935. doi: 10.1016/j.mtbio.2025.101935. eCollection 2025 Aug.
Diabetic wound healing remains a critical clinical challenge due to persistent bacterial infections, oxidative stress, and chronic inflammation. Inspired by the principles of traditional Chinese medicine, we developed a multifunctional hydrogel (CPGel) via solvent-driven self-assembly of bioactive Chlorella extracts, gelatin, and polyethylene glycol (PEG). The CPGel synergizes the 3R strategy: (1) Remove-complete eradication of and via intrinsic antibacterial activity; (2) Remodel-65 % ROS scavenging and immunomodulation by polarizing macrophages from proinflammatory M1 to anti-inflammatory M2 phenotypes to resolve chronic inflammation; and (3) Repair-accelerated tissue regeneration via 9-fold angiogenesis (α-SMA) and 2-fold collagen I deposition. Mechanically robust (compressive strength: 4.16 MPa; tensile strength: 627 kPa) and antifreezing (-100 °C), CPGel demonstrated exceptional transparency and adhesion, ensuring seamless integration with wound sites. In diabetic mice, CPGel achieved 100 % wound closure within 21 days, surpassing controls (73 %), while promoting neovascularization and hair follicle regeneration. This study bridges traditional herbal medicine with advanced biomaterial engineering, offering a scalable, toxin-free platform that addresses the triad of diabetic wound pathogenesis. By harmonizing the 3R strategy-Remove, Remodel, and Repair-CPGel represents a paradigm shift in chronic wound management, with high potential for clinical translation and sustainable therapeutic design.
由于持续的细菌感染、氧化应激和慢性炎症,糖尿病伤口愈合仍然是一个严峻的临床挑战。受传统中医原理的启发,我们通过生物活性小球藻提取物、明胶和聚乙二醇(PEG)的溶剂驱动自组装开发了一种多功能水凝胶(CPGel)。CPGel协同3R策略:(1)清除——通过内在抗菌活性完全根除细菌;(2)重塑——通过将巨噬细胞从促炎M1表型极化到抗炎M2表型来清除65%的活性氧并进行免疫调节,以解决慢性炎症;(3)修复——通过9倍的血管生成(α-SMA)和2倍的I型胶原蛋白沉积加速组织再生。CPGel具有机械强度高(抗压强度:4.16兆帕;抗拉强度:627千帕)和抗冻(-100°C)的特性,具有出色的透明度和粘附性,确保与伤口部位无缝整合。在糖尿病小鼠中,CPGel在21天内实现了100%的伤口闭合,超过了对照组(73%),同时促进了新血管形成和毛囊再生。这项研究将传统草药与先进的生物材料工程联系起来,提供了一个可扩展、无毒素的平台,解决了糖尿病伤口发病机制的三重问题。通过协调3R策略——清除、重塑和修复——CPGel代表了慢性伤口管理的范式转变,具有很高的临床转化潜力和可持续治疗设计潜力。