Suppr超能文献

节律健康的循环见解:一种用于表征人类生理节律的贝叶斯方法,采用随机扩散并应用于心律失常检测。

Circular insights for rhythmic health: A Bayesian approach with stochastic diffusion for characterizing human physiological rhythms with applications to arrhythmia detection.

作者信息

Chatterjee Debashis, Saha Subhrajit, Ghosh Prithwish

机构信息

Department of Statistics, Siksha Bhavana (Institution of Science), Visva Bharati, Bolpur, Santiniketan, India.

Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of America.

出版信息

PLoS One. 2025 Jun 27;20(6):e0324741. doi: 10.1371/journal.pone.0324741. eCollection 2025.

Abstract

Accurate detection of arrhythmic patterns in physiological signals-particularly electrocardiogram (ECG)-is vital for early diagnosis and intervention. Traditional amplitude-based models often fail to capture disruptions in the underlying phase dynamics. In this study, we propose a novel Bayesian framework based on circular stochastic differential equations (SDEs) to model the temporal evolution of cardiac phase as a diffusion process on the circle. Using the MIT-BIH arrhythmia dataset, and also based on extensive simulation of ECG signals with phase anomalies, we validate the proposed methodology and compare our method against two standard approaches: a linear autoregressive (AR) model and a Fourier-based spectral method. Quantitative evaluation demonstrates that depending on the assumption, our method capable of achieving superior accuracy while better balancing sensitivity and specificity in detecting subtle phase anomalies, particularly those undetectable by conventional amplitude-based tools. Unlike existing techniques, our framework is naturally suited for circular data and offers short-term probabilistic prediction. The proposed approach provides a statistically coherent and interpretable framework for modeling rhythmic biomedical signals, laying a foundation for future extensions to multimodal or hierarchical physiological models.

摘要

准确检测生理信号尤其是心电图(ECG)中的心律失常模式对于早期诊断和干预至关重要。传统的基于幅度的模型往往无法捕捉潜在相位动态中的干扰。在本研究中,我们提出了一种基于循环随机微分方程(SDE)的新颖贝叶斯框架,将心脏相位的时间演变建模为圆上的扩散过程。使用麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)心律失常数据集,并基于对具有相位异常的心电图信号的广泛模拟,我们验证了所提出的方法,并将我们的方法与两种标准方法进行比较:线性自回归(AR)模型和基于傅里叶的频谱方法。定量评估表明,根据假设,我们的方法能够实现更高的准确性,同时在检测细微相位异常时能更好地平衡敏感性和特异性,特别是那些传统基于幅度的工具无法检测到的异常。与现有技术不同,我们的框架自然适用于循环数据,并提供短期概率预测。所提出的方法为节律性生物医学信号建模提供了一个统计上连贯且可解释的框架,为未来扩展到多模态或分层生理模型奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0505/12204553/71c6067a9a5d/pone.0324741.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验