Zauner Johannes, Guidolin Carolina, Spitschan Manuel
TUM School of Medicine and Health, Department Health and Sport Sciences, Chronobiology & Health, Technical University of Munich, Munich, Germany.
Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
J Biol Rhythms. 2025 Oct;40(5):480-490. doi: 10.1177/07487304251336624. Epub 2025 Jun 28.
Measuring and analyzing personal light exposure has become increasingly important in circadian and myopia research. Very small measurement values in light exposure patterns, especially zero, are regularly recorded in field studies. These zero-lux values are problematic for commonly applied logarithmic transformations and should neither be dismissed nor be unduly influential in visualizations and statistical modeling. We compare 4 ways to visualize such data on a linear, logarithmic, hybrid, or symlog scale, and we model the light exposure patterns with a generalized additive model by removing zero-lux values, adding a very small or -1 log lux value to the dataset, or using the Tweedie error distribution. We show that a -transformed visualization, implemented in , displays relevant features of light exposure across scales, including zero-lux, while reducing the emphasis on the small values (<1 lux). is well-suited to visualize differences in light exposure covering heavy-tailed negative values. We further show that small but not negligible value additions to the light exposure data of -1 log lux for statistical modeling allow for acceptable models on a logarithmic scale, while very small values distort results. We also demonstrate the utility of the Tweedie distribution, which does not require prior transformations, models data on a logarithmic scale, and includes zero-lux values, capturing personal light exposure patterns satisfactorily. Data from field studies of personal light exposure require appropriate handling of zero-lux values in a logarithmic context. scales for visualizations and an appropriate addition to input values for modeling, or the Tweedie distribution, provide a solid basis. Beyond light exposure, other time-series data relevant to biological rhythms, such as accelerometry for ambulatory sleep scoring in humans or wheel-running in animal models, exhibit zero inflation and can benefit from the methods introduced here.
在昼夜节律和近视研究中,测量和分析个人光照暴露变得越来越重要。在实地研究中,经常会记录到光照暴露模式中的非常小的测量值,尤其是零值。这些零勒克斯值对于常用的对数变换来说是有问题的,在可视化和统计建模中既不应被忽略,也不应产生过度影响。我们比较了在线性、对数、混合或对称对数尺度上可视化此类数据的4种方法,并通过去除零勒克斯值、向数据集中添加非常小的或-1对数勒克斯值,或使用Tweedie误差分布,用广义相加模型对光照暴露模式进行建模。我们表明,在[具体软件名称]中实现的一种经过变换的可视化方法,能够显示跨尺度光照暴露的相关特征,包括零勒克斯值,同时减少对小值(<1勒克斯)的强调。[具体软件名称]非常适合可视化涵盖重尾负值的光照暴露差异。我们进一步表明,在统计建模中,向光照暴露数据添加-1对数勒克斯的小但不可忽略的值,能够在对数尺度上得到可接受的模型,而非常小的值会扭曲结果。我们还证明了Tweedie分布的效用,它不需要事先进行变换,在对数尺度上对数据进行建模,并且包含零勒克斯值,能够令人满意地捕捉个人光照暴露模式。个人光照暴露实地研究的数据在对数背景下需要对零勒克斯值进行适当处理。可视化的[具体尺度名称]以及建模输入值的适当添加,或Tweedie分布,提供了坚实的基础。除了光照暴露之外,与生物节律相关的其他时间序列数据,如用于人类动态睡眠评分的加速度测量或动物模型中的转轮运动,也表现出零膨胀现象,并且可以从此处介绍的方法中受益。