McWhinnie Iona M, Martin Robert T, Xie Jiaxin, Chen Ruizhe, Prieto Kullmer Cesar N, MacMillan David W C
Merck Center for Catalysis, Princeton University, Princeton, New Jersey 08544, United States.
J Am Chem Soc. 2025 Jul 9;147(27):23351-23366. doi: 10.1021/jacs.5c07367. Epub 2025 Jun 29.
The development of efficient C(sp)-C(sp) cross-coupling methods that expand access to a pharmaceutically relevant three-dimensional chemical space represents a key frontier in organic synthesis. Traditional cross-coupling strategies readily achieve C(sp)-C(sp) and C(sp)-C(sp) bond formation but face significant challenges in C(sp)-C(sp) coupling due to issues of sluggish inner sphere reductive elimination, β-hydride elimination, and limited cross-selectivity. Recent advances in C(sp)-C(sp) cross-coupling have highlighted the potential of an alternative bond-forming mechanism, bimolecular homolytic substitution (S2), as an outer sphere pathway to overcome these limitations. This strategy leverages a "radical sorting effect", in which sterically distinct alkyl radicals are partitioned based on their substitution patterns. This perspective provides a comprehensive analysis of S2-mediated C(sp)-C(sp) cross-coupling reactions from 2021 to 2024, focusing on iron, nickel, and cobalt catalysis and their powerful applications in quaternary carbon center (QCC) formation. We also highlight emerging opportunities in single functional group cross-coupling and alkene functionalization, demonstrating the versatility of S2 in accessing complex molecular architectures from abundant feedstock chemicals. By addressing key challenges in C(sp)-C(sp) cross-coupling, S2 radical sorting catalysis holds significant promise for expanding the C(sp)-rich chemical space and enabling transformative advances in organic synthesis.
高效的C(sp)-C(sp)交叉偶联方法的发展拓宽了进入与药物相关的三维化学空间的途径,这是有机合成中的一个关键前沿领域。传统的交叉偶联策略很容易实现C(sp)-C(sp)和C(sp)-C(sp)键的形成,但由于内球还原消除缓慢、β-氢消除以及交叉选择性有限等问题,在C(sp)-C(sp)偶联方面面临重大挑战。C(sp)-C(sp)交叉偶联的最新进展突出了一种替代的键形成机制——双分子均裂取代(S2)作为克服这些限制的外层球途径的潜力。该策略利用了一种“自由基分选效应”,即空间上不同的烷基自由基根据其取代模式进行分配。本文对2021年至2024年S2介导的C(sp)-C(sp)交叉偶联反应进行了全面分析,重点关注铁、镍和钴催化及其在季碳中心(QCC)形成中的强大应用。我们还强调了单官能团交叉偶联和烯烃官能化方面的新机遇,展示了S2在从丰富的原料化学品构建复杂分子结构方面的多功能性。通过应对C(sp)-C(sp)交叉偶联中的关键挑战,S2自由基分选催化在扩展富含C(sp)的化学空间以及推动有机合成的变革性进展方面具有巨大潜力。