Li Zijun, Fang Le, Zhang Hui, Wu Wei, Ren Wei
Physics Department, Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, State Key Laboratory of Advanced Refractories, Institute for Quantum Science and Technology, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China.
School of Materials Science, Shanghai Dianji University, Shanghai 201306, China.
Phys Chem Chem Phys. 2025 Jul 17;27(28):14896-14905. doi: 10.1039/d5cp01307k.
The emergence of two-dimensional ferroelectrics has spurred significant interest for beyond-Moore electronics. Recent breakthroughs have demonstrated the robust out-of-plane ferroelectricity in specifically engineered hexagonal boron nitride (h-BN) configurations interlayer sliding mechanisms. We systematically investigate stacking-dependent ferroelectric ordering in multilayer h-BN using first principles calculation methods and the modern theory of polarization. In the h-BN of three layers, interlayer slip disrupts the spatial inversion symmetry of the structure, generating switchable out-of-plane dipoles modulated by stacking sequences. Symmetry analysis of trilayer h-BN reveals 36 distinct stacking orders. These are grouped into 4 transformation sets, each containing 9 stackings that are mutually convertible interlayer sliding. Among these, 30 configurations are non-centrosymmetric. This provides more options for exhibiting ferroelectricity than the bilayer system, where only AB/BA stacking configurations possess an electric dipole moment. We systematically calculate the different characteristics of single-layer sliding and double-layer sliding in trilayer h-BN. When the number of layers further increases, we propose two stacking strategies to enhance electric dipole moments: (1) introducing AB stacking for polarization accumulation and (2) employing AA' antiparallel stacking to amplify vertical dipoles. These findings provide fundamental insights into sliding ferroelectric mechanisms in h-BN multilayers and establish design principles for developing ultracompact ferroelectric devices with tailored polarization characteristics.
二维铁电体的出现激发了人们对超越摩尔电子学的浓厚兴趣。最近的突破表明,在经过特殊设计的六方氮化硼(h-BN)结构中存在稳健的面外铁电性以及层间滑动机制。我们使用第一性原理计算方法和现代极化理论,系统地研究了多层h-BN中依赖于堆叠的铁电有序性。在三层h-BN中,层间滑移破坏了结构的空间反演对称性,产生了由堆叠序列调制的可切换面外偶极子。对三层h-BN的对称性分析揭示了36种不同的堆叠顺序。这些被分为4个变换集,每个变换集包含9种通过层间滑动可相互转换的堆叠。其中,30种构型是非中心对称的。这比双层系统提供了更多展示铁电性的选择,在双层系统中只有AB/BA堆叠构型具有电偶极矩。我们系统地计算了三层h-BN中单层滑动和双层滑动的不同特性。当层数进一步增加时,我们提出了两种增强电偶极矩的堆叠策略:(1)引入AB堆叠以积累极化,(2)采用AA'反平行堆叠以放大垂直偶极子。这些发现为h-BN多层膜中的滑动铁电机制提供了基本见解,并为开发具有定制极化特性的超紧凑型铁电器件建立了设计原则。