Suppr超能文献

建立具有双中心外部验证的基于机器学习的预测模型:探讨机器人手术在预防右侧结肠癌延迟胃排空中的作用。

Establishment of a machine learning-based predictive model with dual-center external validation: investigating the role of robotic surgery in preventing delayed gastric emptying for right-sided colon cancer.

作者信息

Fan Peng, Baral Shantanu, Li Ruiqi, Jiang Yongjun, Wang Yulong, Fang Dengyang, Jiang Xuetong, Xie Xiangyu, Xue Tongqing, Wang Daorong

机构信息

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.

Department of Surgery, Huaian Cancer Hospital, Huai'an, China.

出版信息

J Robot Surg. 2025 Jun 30;19(1):335. doi: 10.1007/s11701-025-02465-4.

Abstract

After colorectal surgery, delayed gastric emptying (DGE) is a clinically significant postoperative complication that significantly lowers patients' quality of life. The evolving application of robotic surgery in gastrointestinal oncology continues to prompt investigation into its dual therapeutic potential: achieving oncological efficacy while mitigating DGE complications. The primary objectives of this study were to identify high-risk factors for DGE, develop a predictive model, and conduct internal and external validation. In addition, we investigated the potential advantages of robotic surgery in preventing DGE through cohort analysis and predictive model. This study utilized data from two major clinical research centers: Cohort 1: 522 right hemicolectomy cases (Northern Jiangsu People's Hospital, 2019-2024); Cohort 2: 115 cases (Huai'an Cancer Hospital, 2019-2024). Machine learning algorithms and logistic regression were employed to construct predictive models. After comparing their performance, the logistic regression model was selected to predict DGE following radical resection of right-sided colon cancer to further screening of high-risk factors for DGE and evaluation of the advantages of robotic surgery. The predictive model demonstrated robust performance upon internal and external validation, incorporating seven variables including: age (OR = 3.08), obstruction (OR = 5.51), preoperative hyperglycemia (OR = 2.56), preoperative potassium (OR = 3.55), surgical type (OR = 4.65) and anastomotic leakage (OR = 14.56). These variables were consequently identified as significant risk factors for DGE. Notably, cohort analysis revealed a slight reduction in DGE incidence with robotic surgery compared to laparoscopic approaches without statistically significant (9.0% vs 11.2%). We have established a more reliable predictive model for DGE which can provide guidance for clinical practitioners and conclude that robotic surgery demonstrates comparable efficacy to laparoscopic surgery, with satisfactory clinical outcomes in preventing the incidence of DGE.

摘要

结直肠手术后,胃排空延迟(DGE)是一种具有临床意义的术后并发症,会显著降低患者的生活质量。机器人手术在胃肠肿瘤学中的应用不断发展,这促使人们继续研究其双重治疗潜力:在实现肿瘤学疗效的同时减轻DGE并发症。本研究的主要目的是确定DGE的高危因素,建立预测模型,并进行内部和外部验证。此外,我们通过队列分析和预测模型研究了机器人手术在预防DGE方面的潜在优势。本研究利用了两个主要临床研究中心的数据:队列1:522例右半结肠切除术病例(苏北人民医院,2019 - 2024年);队列2:115例病例(淮安肿瘤医院,2019 - 2024年)。采用机器学习算法和逻辑回归构建预测模型。在比较它们的性能后,选择逻辑回归模型来预测右侧结肠癌根治性切除术后的DGE,以进一步筛查DGE的高危因素并评估机器人手术的优势。该预测模型在内部和外部验证中表现出强大的性能,纳入了七个变量,包括:年龄(OR = 3.08)、梗阻(OR = 5.51)、术前高血糖(OR = 2.56)、术前血钾(OR = 3.55)、手术类型(OR = 4.65)和吻合口漏(OR = 14.56)。因此,这些变量被确定为DGE的重要危险因素。值得注意的是,队列分析显示,与腹腔镜手术相比,机器人手术的DGE发生率略有降低,但无统计学意义(9.0%对11.2%)。我们建立了一个更可靠的DGE预测模型,可为临床医生提供指导,并得出结论,机器人手术与腹腔镜手术疗效相当,在预防DGE发生率方面具有令人满意的临床结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验