Loudig Olivier, Ben-Dov Iddo Z, Shapiro Beny, Mitchell Megan I, Lachica Mila, Topilow Arthur, Liu Christina, Ronan Michael
Center for Discovery and Innovation, Hackensack Meridian Health (HMH); Oncology department, Georgetown University;
Department of Medicine B, Hadassah - Hebrew University Medical Center.
J Vis Exp. 2025 Jun 13(220). doi: 10.3791/67154.
Recent studies demonstrate that small extracellular vesicles (sEVs), which are found in all biofluids, play critical roles in intercellular communication by channeling proteins, DNA, and RNAs. MicroRNAs (miRNAs) that are packaged in sEVs have emerged as critical deliverable regulators in recipient cells. Since sEVs secreted by normal and diseased cells carry different miRNA cargos, recent sEV-miRNA profiling studies suggest that they may help identify novel circulating biomarkers. However, cell/disease-specific sEVs circulating in diverse biofluids, once isolated, provide low miRNA quantities, which are generally difficult to quantify using conventional spectrometric methodologies. Small non-coding RNA Next Generation Sequencing (NGS), which allows for the amplification of cloned miRNA sequences, offers a valuable opportunity to evaluate the miRNA cargos of sEVs. Unfortunately, commercial cDNA library preparation procedures often require RNA inputs well above the unquantifiable amounts available from isolated sEVs. Thus, considering the robustness and multiplexing capabilities of our existing cDNA library preparation procedure (i.e., initially optimized for the analysis of low-input, highly degraded, formalin-fixed paraffin-embedded (FFPE) RNA), we sought to evaluate its applicability for the analysis of sEV miRNAs. Importantly, taking into account the recent technical clustering improvements of sequencing chips, we sought to adapt our transcript barcoding approach within a paired-end, dual index-compatible cDNA library preparation workflow to enhance our sequencing and multiplexing capabilities. Using RNA extracted from 8.4 × 10 sEVs in 16 replicates, and from decreasing amounts of sEVs from 10 sEVs to as low as 2.5 × 10 sEVs, we evaluated the reproducibility and sensitivity of this methodology. The data demonstrate that the 16 3' adenylated DNA barcodes allow for highly reproducible and sensitive detection of sEV-miRNA profiles across repeats using as low as 3.15 pg of total small non-coding RNAs or 1.35 pg of miRNAs.
最近的研究表明,存在于所有生物流体中的小细胞外囊泡(sEVs)通过传递蛋白质、DNA和RNA在细胞间通讯中发挥关键作用。包装在sEVs中的微小RNA(miRNAs)已成为受体细胞中关键的可传递调节因子。由于正常细胞和患病细胞分泌的sEVs携带不同的miRNA货物,最近的sEV-miRNA谱分析研究表明,它们可能有助于识别新的循环生物标志物。然而,在各种生物流体中循环的细胞/疾病特异性sEVs,一旦分离出来,提供的miRNA数量很少,通常难以使用传统的光谱方法进行定量。小型非编码RNA下一代测序(NGS)允许对克隆的miRNA序列进行扩增,可以提供一个评估sEVs的miRNA货物的宝贵机会。不幸的是,商业cDNA文库制备程序通常需要的RNA输入量远高于从分离的sEVs中获得的无法定量的量。因此,考虑到我们现有的cDNA文库制备程序的稳健性和多重分析能力(即最初针对低输入量、高度降解且福尔马林固定石蜡包埋(FFPE)的RNA分析进行优化),我们试图评估其对sEV miRNAs分析的适用性。重要的是,考虑到测序芯片最近的技术聚类改进,我们试图在双端、双索引兼容的cDNA文库制备工作流程中调整我们的转录本条形码方法,以增强我们的测序和多重分析能力。使用从8.4×10个sEVs中提取的RNA进行16次重复实验,并使用从10个sEVs到低至2.5×10个sEVs的递减量的sEVs,我们评估了该方法的可重复性和灵敏度。数据表明,16个3'腺苷酸化DNA条形码能够使用低至3.15 pg的总小型非编码RNA或1.35 pg的miRNAs,在重复实验中对sEV-miRNA谱进行高度可重复和灵敏的检测。