Suppr超能文献

乳腺导管原位癌术后升级预测的DCIS-IBC指南委员会:一项多中心研究的临床见解

The DCIS-IBC guide board on predicting postoperative upgrading in breast ductal carcinoma in situ: clinical insights from a multicenter study.

作者信息

Duan Chenglong, Du Jinsui, Zhu Lizhe, Niu Man, Fan Dong, Jiang Siyuan, Zhang Jiaqi, Zhou Yudong, Pan Yi, Li Danni, Zhang Jianing, Ren Yu, Wang Bin

机构信息

Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, China.

Department of Pathology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China.

出版信息

Breast Cancer Res Treat. 2025 Jun 30. doi: 10.1007/s10549-025-07763-x.

Abstract

BACKGROUND

Ductal carcinoma in situ (DCIS) carries a significant risk of postoperative upgrading to invasive breast cancer (IBC), yet existing prediction models lack validation in Asian populations. This study aimed to develop and validate a population-specific nomogram to preoperatively predict DCIS-to-IBC upgrading in Asian patients.

METHODS

A multicenter retrospective cohort of 465 Asian women diagnosed with DCIS by core needle biopsy (2015-2021) was analyzed. Patients were randomly divided into training (n = 257), internal validation (n = 110), and external validation cohorts (n = 98). Predictors were selected via LASSO regression and multivariable logistic regression. Model performance was assessed using AUC, calibration curves, and decision curve analysis (DCA). An interactive online nomogram was developed for clinical application.

RESULTS

Postoperative upgrading occurred in 49.46% (230/465) of patients. Four independent predictors were identified: palpable mass (OR = 2.55, p = 0.096), lesion palpability (OR = 2.58, p = 0.043), low nuclear grade (OR = 0.55, p = 0.098), and suspected invasion (OR = 6.59, p < 0.001). The nomogram demonstrated robust discrimination in the training cohort (AUC = 0.802, 95% CI 0.748-0.856), with maintained performance in internal validation (AUC = 0.753) and acceptable generalizability in external validation (AUC = 0.680). DCA confirmed clinical utility across risk thresholds. The dynamic nomogram ( https://duancl777.shinyapps.io/dynnomapp/ ) enabled real-time risk stratification.

CONCLUSIONS

The DCIS-IBC Guide Board is the first Asian-specific model integrating clinicopathological predictors to identify high-risk DCIS patients. It facilitates personalized decisions, such as omitting sentinel lymph node biopsy while reducing overtreatment. Although external validation showed moderate performance, this tool addresses critical population heterogeneity and enhances preoperative risk assessment. Prospective multicenter studies are warranted to optimize generalizability and explore multimodal predictors.

摘要

背景

导管原位癌(DCIS)术后进展为浸润性乳腺癌(IBC)的风险很高,但现有的预测模型在亚洲人群中缺乏验证。本研究旨在开发并验证一种针对特定人群的列线图,用于术前预测亚洲患者DCIS进展为IBC的情况。

方法

对465例经粗针活检诊断为DCIS的亚洲女性进行多中心回顾性队列分析(2015 - 2021年)。患者被随机分为训练组(n = 257)、内部验证组(n = 110)和外部验证组(n = 98)。通过LASSO回归和多变量逻辑回归选择预测因素。使用AUC、校准曲线和决策曲线分析(DCA)评估模型性能。开发了一个交互式在线列线图用于临床应用。

结果

49.46%(230/465)的患者术后出现进展。确定了四个独立预测因素:可触及肿块(OR = 2.55,p = 0.096)、病变可触及性(OR = 2.58,p = 0.043)、低核分级(OR = 0.55,p = 0.098)和可疑浸润(OR = 6.59,p < 0.001)。列线图在训练组中显示出强大的区分能力(AUC = 0.802,95% CI 0.748 - 0.856),在内部验证中性能保持稳定(AUC = 0.753),在外部验证中具有可接受的泛化能力(AUC = 0.680)。DCA证实了在不同风险阈值下的临床实用性。动态列线图(https://duancl777.shinyapps.io/dynnomapp/)实现了实时风险分层。

结论

DCIS - IBC指南委员会是首个整合临床病理预测因素以识别高危DCIS患者的亚洲特异性模型。它有助于做出个性化决策,如省略前哨淋巴结活检同时减少过度治疗。尽管外部验证显示性能中等,但该工具解决了关键的人群异质性问题并增强了术前风险评估。需要进行前瞻性多中心研究以优化泛化能力并探索多模式预测因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验