Bhardwaj Purav, Sra Misha
Human-AI Experience (HAX) Lab, University of California, Santa Barbara, 93106, USA.
Sci Rep. 2025 Jul 1;15(1):21542. doi: 10.1038/s41598-025-02252-z.
Spatial memory and navigation are foundational cognitive functions intricately tied to the hippocampal and striatal neural circuits. These regions integrate multisensory inputs from the environment, with the vestibular system exerting a particularly strong influence on visuospatial processing. While prior work has explored how Galvanic Vestibular Stimulation (GVS) can enhance spatial cognition in individuals with vestibular disorders, limited research has focused on its potentially beneficial effects in those without vestibular disorders. To address this gap, we present a study using a novel experimental paradigm that combines noisy GVS (nGVS) with virtual reality (VR) to systematically examine the impact of vestibular stimulation on spatial learning and memory in healthy adults. Our findings (n=32) suggest that nGVS can significantly improve spatial memory performance, facilitating learning and recollection compared to the without-nGVS condition. Unlike previous screen-based studies, our work uniquely integrates nGVS with an ecologically valid scenario in VR, with study results indicating nGVS as a potential modifier of human spatial memory.
空间记忆和导航是与海马体和纹状体神经回路紧密相连的基础认知功能。这些区域整合来自环境的多感官输入,前庭系统对视觉空间处理有着特别强烈的影响。虽然先前的研究探讨了电前庭刺激(GVS)如何增强前庭障碍个体的空间认知,但针对其在无前庭障碍个体中潜在益处的研究有限。为了填补这一空白,我们开展了一项研究,采用一种新颖的实验范式,将噪声性前庭刺激(nGVS)与虚拟现实(VR)相结合,系统地研究前庭刺激对健康成年人空间学习和记忆的影响。我们的研究结果(n = 32)表明,与无nGVS条件相比,nGVS能显著提高空间记忆表现,促进学习和回忆。与以往基于屏幕的研究不同,我们的工作独特地将nGVS与VR中的生态有效场景相结合,研究结果表明nGVS是人类空间记忆的潜在调节因素。