Muniyappan Sinnappadass, Krishnaiah Ravi
School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Sci Rep. 2025 Jul 2;15(1):22611. doi: 10.1038/s41598-025-05628-3.
This research aims to determine an appropriate injection timing (IT) and exhaust gas recirculation rate (EGR) for optimal output factors on a compression ignition (CI) engine fuelled by diesel-mahua-ethanol blend combined with zinc oxide (ZnO) combustion enhancer using experimentation, response surface methodology (RSM) and artificial neural networks (ANN). The generated ANN and RSM models demonstrated enhanced prediction accuracy with high correlation coefficient (R) values. The effects of IT and EGR rate were experimented at varying load conditions. The RSM established operating parameters for optimal output responses are 26.4° bTDC IT and 8.63% EGR rate for B25E15Zn50 blend. Finally, the process optimization by RSM has been validated with experimental results. The established engine operating parameters resulted in improvement of peak cylinder pressure (CP), heat release rate (HRR), brake thermal efficiency (BTE) by 12.3%, 9.9%, 3.7% respectively and also reduction in hydrocarbon (HC), carbon monoxide (CO), smoke, and nitrogen oxides (NOx) by 26.4%, 19.6%, 43.6% and 33.7% respectively at 80% load. This research signifies the benefit of RSM and ANN models for establishing engine operating parameters for optimal engine output responses.
本研究旨在通过实验、响应面法(RSM)和人工神经网络(ANN),确定在使用氧化锌(ZnO)燃烧增强剂的柴油-麻疯树油-乙醇混合燃料的压缩点火(CI)发动机上,实现最佳输出因子的合适喷射正时(IT)和废气再循环率(EGR)。所生成的人工神经网络和响应面模型显示出具有高相关系数(R)值的增强预测精度。在不同负载条件下对喷射正时和废气再循环率的影响进行了实验。响应面法确定的B25E15Zn50混合燃料最佳输出响应的运行参数为上止点前26.4°的喷射正时和8.63%的废气再循环率。最后,通过实验结果验证了响应面法的工艺优化。所确定的发动机运行参数使峰值气缸压力(CP)、热释放率(HRR)、制动热效率(BTE)分别提高了12.3%、9.9%、3.7%,同时在80%负载下,碳氢化合物(HC)、一氧化碳(CO)、烟雾和氮氧化物(NOx)分别降低了26.4%、19.6%、43.6%和33.7%。本研究表明了响应面法和人工神经网络模型在确定发动机运行参数以实现最佳发动机输出响应方面的益处。