Suppr超能文献

一种用于分析口腔健康教育YouTube评论中恐慌和焦虑情绪的可解释的RoBERTa方法。

An explainable RoBERTa approach to analyzing panic and anxiety sentiment in oral health education YouTube comments.

作者信息

Yadalam Pradeep Kumar, Thaha Mohamed, Natarajan Prabhu Manickam, Ardila Carlos M

机构信息

Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India.

Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, 346, Ajman, United Arab Emirates.

出版信息

Sci Rep. 2025 Jul 1;15(1):21737. doi: 10.1038/s41598-025-06560-2.

Abstract

Online videos are vital for health education and medical decision-making, but their comment sections often spread misinformation, causing anxiety and confusion. This study identifies stress-inducing comments in oral health education content, aiming to improve mental health outcomes, educational effectiveness, user experience, and scalability. This study uses RoBERTa, a state-of-the-art language model, to advance Natural Language Processing (NLP) research and enable real-time feedback in social media environments. The RoBERTa-base configuration, with 12 transformer blocks, attention heads, and a 50,265-token vocabulary, was fine-tuned using optimized hyperparameters. The workflow includes data ingestion, token normalization, special character handling, embedding generation, transformer encoding, classification head processing, output generation, and evaluation metrics. This framework aims to enhance online health education discourse and establish automated comment moderation systems. The RoBERTa model achieved 75.00% overall accuracy in classifying panic and anxiety-inducing comments, with 74.76% precision and 0.800 recall for positive cases. While the model performed well in identifying relevant comments, its accuracy in panic and informative categories requires improvement. This study demonstrates the potential of RoBERTa-based deep learning for classifying dental-related comments, providing clinical insights and identifying areas for refinement. Although the model shows promise in detecting anxiety-inducing content, further optimization is needed.

摘要

在线视频对健康教育和医疗决策至关重要,但其评论区往往会传播错误信息,引发焦虑和困惑。本研究旨在识别口腔健康教育内容中会引发压力的评论,以改善心理健康状况、提高教育效果、提升用户体验并实现可扩展性。本研究使用最先进的语言模型RoBERTa推进自然语言处理(NLP)研究,并在社交媒体环境中实现实时反馈。具有12个变换器模块、注意力头和50265个词元词汇的RoBERTa-base配置使用优化的超参数进行了微调。工作流程包括数据摄取、词元归一化、特殊字符处理、嵌入生成、变换器编码、分类头处理、输出生成和评估指标。该框架旨在加强在线健康教育话语并建立自动评论审核系统。RoBERTa模型在对引发恐慌和焦虑的评论进行分类时总体准确率达到75.00%,阳性病例的精确率为74.76%,召回率为0.800。虽然该模型在识别相关评论方面表现良好,但其在恐慌和信息类别的准确率仍有待提高。本研究证明了基于RoBERTa的深度学习在对牙科相关评论进行分类方面的潜力,提供了临床见解并确定了需要改进的领域。尽管该模型在检测引发焦虑的内容方面显示出前景,但仍需要进一步优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验