Suppr超能文献

联邦环境下利用 AI 增强深度学习进行可解释的红细胞异常检测分析。

An analysis of decipherable red blood cell abnormality detection under federated environment leveraging XAI incorporated deep learning.

机构信息

Department of Computer Science and Engineering, University of Liberal Arts Bangladesh, Dhaka, Bangladesh.

Department of Computer Science and Engineering, Brac University, Dhaka, Bangladesh.

出版信息

Sci Rep. 2024 Oct 27;14(1):25664. doi: 10.1038/s41598-024-76359-0.

Abstract

In recent times, automated detection of diseases from pathological images leveraging Machine Learning (ML) models has become fairly common, where the ML models learn detecting the disease by identifying biomarkers from the images. However, such an approach requires the models to be trained on a vast amount of data, and healthcare organizations often tend to limit access due to privacy concerns. Consequently, collecting data for traditional centralized training becomes challenging. These privacy concerns can be handled by Federation Learning (FL), which builds an unbiased global model from local models trained with client data while maintaining the confidentiality of local data. Using FL, this study solves the problem of centralized data collection by detecting deformations in images of Red Blood Cells (RBC) in a decentralized way. To achieve this, RBC data is used to train multiple Deep Learning (DL) models, and among the various DL models, the most efficient one is considered to be used as the global model inside the FL framework. The FL framework works by copying the global model's weight to the client's local models and then training the local models in client-specific devices to average the weights of the local model back to the global model. In the averaging process, direct averaging is performed and alongside, weighted averaging is also done to weigh the individual local model's contribution according to their performance, keeping the FL framework immune to the effects of bad clients and attacks. In the process, the data of the client remains confidential during training, while the global model learns necessary information. The results of the experiments indicate that there is no significant difference in the performance of the FL method and the best-performing DL model, as the best-performing DL model reaches an accuracy of 96% and the FL environment reaches 94%-95%. This study shows that the FL technique, in comparison to the classic DL methodology, can accomplish confidentiality secured RBC deformation classification from RBC images without substantially diminishing the accuracy of the categorization. Finally, the overall validity of the classification results has been verified by employing GradCam driven Explainable AI techniques.

摘要

近年来,利用机器学习(ML)模型从病理图像中自动检测疾病已经变得相当普遍,其中 ML 模型通过从图像中识别生物标志物来学习检测疾病。然而,这种方法需要模型在大量数据上进行训练,而医疗保健组织由于隐私问题往往倾向于限制访问。因此,传统的集中式训练数据的收集变得具有挑战性。这些隐私问题可以通过联邦学习(FL)来解决,FL 通过使用客户端数据训练的本地模型构建一个无偏差的全局模型,同时保持本地数据的机密性。使用 FL,本研究通过以分散的方式检测红细胞(RBC)图像中的变形来解决集中式数据收集的问题。为了实现这一点,使用 RBC 数据来训练多个深度学习(DL)模型,并且在各种 DL 模型中,被认为是最有效的一个模型被用作 FL 框架内的全局模型。FL 框架的工作原理是将全局模型的权重复制到客户端的本地模型,然后在客户端特定的设备中训练本地模型,将本地模型的权重平均回全局模型。在平均化过程中,直接进行平均化,同时也进行加权平均化,根据其性能为各个本地模型的贡献加权,使 FL 框架免受不良客户端和攻击的影响。在这个过程中,客户端的数据在训练过程中保持机密,而全局模型学习必要的信息。实验结果表明,FL 方法和表现最佳的 DL 模型的性能没有显著差异,因为表现最佳的 DL 模型达到了 96%的准确率,而 FL 环境达到了 94%-95%。本研究表明,与经典的 DL 方法相比,FL 技术可以在不显著降低分类准确性的情况下,从 RBC 图像中实现安全保密的 RBC 变形分类。最后,通过使用 GradCam 驱动的可解释人工智能技术验证了分类结果的整体有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98fc/11514213/c5047cccb714/41598_2024_76359_Fig8_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验