Hu Pei, Han Yibo, Zhang Zheng, Chu Shu-Chuan, Pan Jeng-Shyang
School of Computer and Software, Nanyang Institute of Technology, Nanyang, 473004, China.
College of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
Sci Rep. 2024 Nov 29;14(1):29728. doi: 10.1038/s41598-024-81075-w.
Multi-level thresholding for image segmentation is one of the key techniques in image processing. Although numerous methods have been introduced, it remains challenging to achieve stable and satisfactory thresholds when segmenting images with various unknown properties. This paper proposes an equilibrium optimizer algorithm to find the optimal multi-level thresholds for grayscale images. The proposed algorithm AEO (advanced equilibrium optimizer) uses two sub-populations to balance exploration and exploitation during the multi-level threshold search process. Two mutation schemes are proposed for the sub-populations to prevent them from being trapped in local optima. AEO offers a repair function to avoid generating duplicate thresholds. The performance of AEO is evaluated on multiple benchmark images. Experimental results demonstrate that AEO has an outstanding ability for multi-level threshold image segmentation in terms of cross-entropy, signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and feature similarity index (FSIM).
用于图像分割的多级阈值处理是图像处理中的关键技术之一。尽管已经介绍了许多方法,但在分割具有各种未知属性的图像时,实现稳定且令人满意的阈值仍然具有挑战性。本文提出了一种平衡优化器算法来寻找灰度图像的最佳多级阈值。所提出的算法AEO(高级平衡优化器)在多级阈值搜索过程中使用两个子种群来平衡探索和利用。为子种群提出了两种变异方案,以防止它们陷入局部最优。AEO提供了一个修复函数来避免生成重复的阈值。在多个基准图像上评估了AEO的性能。实验结果表明,在交叉熵、信噪比(PSNR)、结构相似性指数测量(SSIM)和特征相似性指数(FSIM)方面,AEO具有出色的多级阈值图像分割能力。