Sorriento Angela, Guachi-Guachi Lorena, Turini Claudia, Lenzi Enrico, Dolzani Paolo, Lisignoli Gina, Kerdegari Sajedeh, Valenza Gaetano, Canale Claudio, Ricotti Leonardo, Cafarelli Andrea
The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
Sci Rep. 2025 Jul 1;15(1):20760. doi: 10.1038/s41598-025-07827-4.
In this study, we explore the potential of ten quantitative (radiofrequency-based) ultrasound parameters to assess the progressive loss of collagen and proteoglycans, mimicking an osteoarthritis condition in ex-vivo bovine cartilage samples. Most analyzed metrics showed significant changes as the degradation progressed, especially with collagenase treatment. We propose for the first time a combination of these ultrasound parameters through machine learning models aimed at automatically identifying healthy and degraded cartilage samples. The random forest model showed good performance in distinguishing healthy cartilage from trypsin-treated samples, with an accuracy of 60%. The support vector machine demonstrated excellent accuracy (96%) in differentiating healthy cartilage from collagenase-degraded samples. Histological and mechanical analyses further confirmed these findings, with collagenase having a more pronounced impact on both mechanical and histological properties, compared to trypsin. These metrics were obtained using an ultrasound probe having a transmission frequency of 15 MHz, typically used for the diagnosis of musculoskeletal diseases, enabling a fully non-invasive procedure without requiring arthroscopic probes. As a perspective, the proposed quantitative ultrasound assessment has the potential to become a new standard for monitoring cartilage health, enabling the early detection of cartilage pathologies and timely interventions.
在本研究中,我们探究了十种定量(基于射频)超声参数评估胶原蛋白和蛋白聚糖逐渐流失的潜力,该过程模拟了体外牛软骨样本中的骨关节炎状况。随着降解过程的推进,大多数分析指标都显示出显著变化,尤其是在胶原酶处理后。我们首次通过机器学习模型提出了这些超声参数的组合,旨在自动识别健康和退化的软骨样本。随机森林模型在区分健康软骨和胰蛋白酶处理样本方面表现良好,准确率为60%。支持向量机在区分健康软骨和胶原酶降解样本方面表现出优异的准确率(96%)。组织学和力学分析进一步证实了这些发现,与胰蛋白酶相比,胶原酶对力学和组织学特性的影响更为显著。这些指标是使用传输频率为15MHz的超声探头获得的,该探头通常用于诊断肌肉骨骼疾病,可实现完全无创的操作,无需关节镜探头。展望未来,所提出的定量超声评估有可能成为监测软骨健康的新标准,能够早期检测软骨病变并及时进行干预。