Chen Boyuan, Huang Kuang, Raghupathi Sunand, Chandratreya Ishaan, Du Qiang, Lipson Hod
Department of Computer Science, Columbia University, New York, USA.
Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA.
Nat Comput Sci. 2022 Jul;2(7):433-442. doi: 10.1038/s43588-022-00281-6. Epub 2022 Jul 25.
All physical laws are described as mathematical relationships between state variables. These variables give a complete and non-redundant description of the relevant system. However, despite the prevalence of computing power and artificial intelligence, the process of identifying the hidden state variables themselves has resisted automation. Most data-driven methods for modelling physical phenomena still rely on the assumption that the relevant state variables are already known. A longstanding question is whether it is possible to identify state variables from only high-dimensional observational data. Here we propose a principle for determining how many state variables an observed system is likely to have, and what these variables might be. We demonstrate the effectiveness of this approach using video recordings of a variety of physical dynamical systems, ranging from elastic double pendulums to fire flames. Without any prior knowledge of the underlying physics, our algorithm discovers the intrinsic dimension of the observed dynamics and identifies candidate sets of state variables.
所有物理定律都被描述为状态变量之间的数学关系。这些变量对相关系统给出了完整且无冗余的描述。然而,尽管计算能力和人工智能十分普及,但识别隐藏状态变量本身的过程仍无法实现自动化。大多数用于对物理现象进行建模的数据驱动方法仍然依赖于相关状态变量已经已知的假设。一个长期存在的问题是,是否有可能仅从高维观测数据中识别状态变量。在此,我们提出了一个原则,用于确定一个观测系统可能具有多少个状态变量以及这些变量可能是什么。我们使用从弹性双摆到火焰等各种物理动力系统的视频记录来证明这种方法的有效性。在对潜在物理原理没有任何先验知识的情况下,我们的算法发现了观测动力学的内在维度,并识别出状态变量的候选集。