Chen Yiming, Huang Shujuan, Shen Peifeng, Li Yuanchao, He Yanan, Dong Guotong, Huang Siqi, Zou Meixia, Zhang Zhijie, Liu Chunlong
Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China.
BMC Sports Sci Med Rehabil. 2025 Jul 2;17(1):174. doi: 10.1186/s13102-025-01226-y.
With increasing occupational demands for flexed elbow postures, understanding multi-joint influences on upper limb musculature becomes crucial. This cross-sectional observational study investigated the effects of forearm rotation and elbow flexion angles on muscle stiffness and activation patterns in biceps brachii (BB) and brachioradialis (BR) during loaded isometric contractions.
Thirty-six healthy males performed isometric elbow flexion under 15 combinations of isometric elbow flexion (3 forearm rotational state × 5 elbow joint angles). Muscle stiffness was quantified using MyotonPRO, while activation levels were assessed via surface electromyography (sEMG).
Elbow angle and forearm rotation exerted significant main effects on BB stiffness and sEMG RMS (p ≤ 0.05). Their interaction influenced BB stiffness (p ≤ 0.05) but not RMS. In pronation, BB stiffness progressively decreased from 15° (resting) to 120°, with significant reductions at 15° vs. 90°/120° and 30°-60° vs. 90°/120° (p ≤ 0.05). Neutral/supinated positions exhibited peak stiffness at 60°. Under 1 kg loading, stiffness ranked: pronation (lowest) < neutral < supination (highest; p ≤ 0.05). BB RMS peaked at 60° (neutral/supination) and 45° (pronation). Pronated BB RMS was reduced at 30° vs. 45°/60°/120°, while neutral positioning showed lower RMS at 30° vs. 45°-120° (p ≤ 0.05). Supinated BB RMS decreased at 30° vs. 45°/60° and 120° vs. 45°-90° (p ≤ 0.05). Among 30°-90°, supinated BB RMS exceeded neutral/pronated values; neutral surpassed pronation. At 120°, pronated RMS remained lower than neutral/supinated (p ≤ 0.05). For BR, elbow angle affected both stiffness and RMS (p ≤ 0.05), while forearm rotation influenced only RMS (p ≤ 0.05). Interaction effects occurred for both parameters (p ≤ 0.05). BR stiffness declined progressively from 30° to 120°. Pronated BR stiffness was elevated at 30° vs. 60°-120°, 45° vs. 90°/120°, 60° vs. 90°/120°, and 90° vs. 120° (p ≤ 0.05). This progressive pattern was consistent across neutral and supinated positions. Supination yielded higher resting (15°) BR stiffness than pronation/neutral (p ≤ 0.05). Loaded BR stiffness at 45° was greater in pronation vs. supination (p ≤ 0.05). BR RMS peaked at 60° (pronation/neutral) and increased progressively from 30° to 120° (supination). Pronated BR RMS was reduced at 30° vs. 45°-120°, while supinated positioning showed lower RMS at 30° vs. 60°-120°, 45° vs. 90°/120° and 60° vs. 120° (p ≤ 0.05). Neutral RMS was reduced at 30° vs. 60°, increased at 45° vs. 120° and 60° vs. 90°/120° (p ≤ 0.05). Across positions, supinated BR RMS was reduced at 30°-60° vs. pronated/neutral, while pronation demonstrated higher RMS at 90°/120° vs. neutral/supinated (p ≤ 0.05).
These findings suggest that during a 1 kg-loaded isometric elbow flexion task, both muscles exhibit differential activation patterns in response to forearm rotation, elbow joint angle, and their interaction. The observed variations in sEMG RMS values may reflect distinct activation strategies, with BB appearing more active in supination and BR in pronation. Further controlled studies are needed to clarify the underlying biomechanical mechanisms.
随着对屈肘姿势的职业需求不断增加,了解多关节对上肢肌肉组织的影响变得至关重要。这项横断面观察性研究调查了在负重等长收缩过程中,前臂旋转和肘关节屈曲角度对肱二头肌(BB)和肱桡肌(BR)的肌肉僵硬度和激活模式的影响。
36名健康男性在15种等长肘关节屈曲组合(3种前臂旋转状态×5个肘关节角度)下进行等长肘关节屈曲。使用MyotonPRO对肌肉僵硬度进行量化,同时通过表面肌电图(sEMG)评估激活水平。
肘关节角度和前臂旋转对BB僵硬度和sEMG均方根值(RMS)有显著的主效应(p≤0.05)。它们的相互作用影响BB僵硬度(p≤0.05),但不影响RMS。在旋前位,BB僵硬度从15°(休息位)到120°逐渐降低,在15°与90°/120°以及30° - 60°与90°/120°之间有显著降低(p≤0.05)。中立位/旋后位在60°时表现出峰值僵硬度。在1千克负荷下,僵硬度排序为:旋前位(最低)<中立位<旋后位(最高;p≤0.05)。BB的RMS在60°(中立位/旋后位)和45°(旋前位)达到峰值。旋前位的BB在30°时的RMS低于45°/60°/120°时,而中立位在30°时的RMS低于45° - 120°时(p≤0.05)。旋后位的BB在30°时的RMS低于45°/60°,在120°时低于45° - 90°(p≤0.05)。在30° - 90°之间,旋后位的BB RMS超过中立位/旋前位的值;中立位超过旋前位。在120°时,旋前位的RMS仍低于中立位/旋后位(p≤0.05)。对于BR,肘关节角度对僵硬度和RMS均有影响(p≤0.05),而前臂旋转仅影响RMS(p≤0.05)。两个参数均出现相互作用效应(p≤0.05)。BR僵硬度从30°到120°逐渐下降。旋前位的BR在30°时的僵硬度高于60° - 120°、45°时高于90°/120°、60°时高于90°/120°以及90°时高于120°(p≤0.05)。这种逐渐变化的模式在中立位和旋后位是一致的。旋后位在休息位(15°)时的BR僵硬度高于旋前位/中立位(p≤0.05)。在45°时,旋前位的负重BR僵硬度高于旋后位(p≤0.05)。BR的RMS在60°(旋前位/中立位)达到峰值,在旋后位从30°到120°逐渐增加。旋前位的BR在30°时的RMS低于45° - 120°时,而旋后位在30°时的RMS低于60° - 120°、45°时低于90°/120°以及60°时低于120°(p≤0.05)。中立位在30°时的RMS低于60°,在45°时高于120°,在60°时高于90°/120°(p≤0.05)。在所有位置中,旋后位在30° - 60°时的BR RMS低于旋前位/中立位,而旋前位在90°/120°时的RMS高于中立位/旋后位(p≤0.05)。
这些发现表明,在1千克负重的等长肘关节屈曲任务中,两块肌肉对前臂旋转、肘关节角度及其相互作用均表现出不同的激活模式。观察到的sEMG RMS值的变化可能反映了不同的激活策略,BB在旋后位似乎更活跃,而BR在旋前位更活跃。需要进一步的对照研究来阐明潜在的生物力学机制。