Suppr超能文献

在管理急诊分诊流程中运用机器学习技术

Using Machine Learning Technique in Managing Emergency Triage Flow.

作者信息

Almulhim Mohammed, Alfaraj Dunya, Alabbad Dina, Alghamdi Faisal A, AlKhudair Mubarak A, AlKatout Khalid A, AlShehri Saud A, Alsulaibaikh Amal

机构信息

Emergency Medicine Department, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.

Department of Computer Engineering, College of Computer Science and Information Technology, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.

出版信息

Acta Inform Med. 2025;33(2):152-157. doi: 10.5455/aim.2025.33.152-157.

Abstract

BACKGROUND

Triage is a critical component of Emergency department care. Erroneous patient classification and mis-triaging are common in present triage systems worldwide. Therefore, several institutes worldwide have developed artificial intelligence-based algorithms that use machine learning approaches to sort and triage patients effectively.

OBJECTIVE

This study aims were to propose a machine learning model to predict the triage level for emergency medicine department patients and compare its performance to the standard nursing triage system.

METHODS

This retrospective pilot study collected the dataset of emergency department records from King Fahad Hospital of the University in khobar, between January 1, 2020, and December 31, 2022. A sample of 998 randomly selected patients was included in this cohort. The machine learning model was trained using 10-fold cross-validation. Two experiments were conducted, including five triage levels, and the second combing triage levels 2, 3, 4, and 5.

RESULTS

The machine learning model achieved an accuracy of 84% in experiment 1 and 64% in experiment 2. The mis-triage rates of the machine learning model were significantly lower than those of the standard nursing triage system.

CONCLUSION

The machine learning model achieved higher accuracy and lower mis-triage rates than the standard nursing triage system. Thus, the proposed machine learning model can be a helpful tool for emergency department triage, enabling more efficient and accurate patient management.

摘要

背景

分诊是急诊科护理的关键组成部分。在全球目前的分诊系统中,错误的患者分类和误分诊很常见。因此,全球多家机构开发了基于人工智能的算法,使用机器学习方法对患者进行有效分类和分诊。

目的

本研究旨在提出一种机器学习模型,以预测急诊科患者的分诊级别,并将其性能与标准护理分诊系统进行比较。

方法

这项回顾性试点研究收集了2020年1月1日至2022年12月31日期间胡拜尔法赫德国王大学医院急诊科记录的数据集。该队列纳入了998名随机选择的患者样本。使用10折交叉验证对机器学习模型进行训练。进行了两个实验,第一个包括五个分诊级别,第二个将分诊级别2、3、4和5合并。

结果

机器学习模型在实验1中的准确率为84%,在实验2中的准确率为64%。机器学习模型的误分诊率显著低于标准护理分诊系统。

结论

机器学习模型比标准护理分诊系统具有更高的准确率和更低的误分诊率。因此,所提出的机器学习模型可以成为急诊科分诊的有用工具,实现更高效、准确的患者管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ce8/12212266/f7109b5e2fd5/AIM-33-152-g001.jpg

相似文献

3
Triage tools for detecting cervical spine injury in pediatric trauma patients.用于检测小儿创伤患者颈椎损伤的分诊工具。
Cochrane Database Syst Rev. 2017 Dec 7;12(12):CD011686. doi: 10.1002/14651858.CD011686.pub2.
7
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

本文引用的文献

4
Artificial intelligence in emergency medicine: A scoping review.急诊医学中的人工智能:一项范围综述。
J Am Coll Emerg Physicians Open. 2020 Nov 7;1(6):1691-1702. doi: 10.1002/emp2.12277. eCollection 2020 Dec.
5
The potential for artificial intelligence in healthcare.人工智能在医疗保健领域的潜力。
Future Healthc J. 2019 Jun;6(2):94-98. doi: 10.7861/futurehosp.6-2-94.
6
Artificial intelligence in healthcare.人工智能在医疗保健领域的应用。
Nat Biomed Eng. 2018 Oct;2(10):719-731. doi: 10.1038/s41551-018-0305-z. Epub 2018 Oct 10.
7
The present and future of deep learning in radiology.深度学习在放射学中的现在和未来。
Eur J Radiol. 2019 May;114:14-24. doi: 10.1016/j.ejrad.2019.02.038. Epub 2019 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验