Andalusian Health Services, Spain.
Faculty of Health Sciences, University of Granada, Avenida de la Ilustración N. 60, 18016 Granada, Spain.
Int Emerg Nurs. 2022 Jan;60:101109. doi: 10.1016/j.ienj.2021.101109. Epub 2021 Dec 22.
In emergency services is important to accurately assess and classify symptoms, which may be improved with the help of technology. One mechanism that could help and improve predictions from health records or patient flow is machine learning (ML).
To analyse the effectiveness of ML systems in triage for making predictions at the emergency department in comparison with other triage scales/scores.
Following the PRISMA recommendations, a systematic review was conducted using CINAHL, Cochrane, Cuiden, Medline and Scopus databases with the search equation "Machine learning AND triage AND emergency".
Eleven studies were identified. The studies show that the use of ML methods consistently predict important outcomes like mortality, critical care outcomes and admission, and the need for hospitalization in comparison with scales like Emergency Severity Index or others. Among the ML models considered, XGBoost and Deep Neural Networks obtained the highest levels of prediction accuracy, while Logistic Regression performed obtained the worst values.
Machine learning methods can be a good instrument for helping triage process with the prediction of important emergency variables like mortality or the need for critical care or hospitalization.
在急救服务中,准确评估和分类症状非常重要,而技术的帮助可能会对此有所改善。一种可以帮助并提高从健康记录或患者流量中进行预测的机制是机器学习 (ML)。
分析 ML 系统在分诊中进行预测的有效性,以便与其他分诊量表/评分进行比较。
根据 PRISMA 建议,使用 CINAHL、Cochrane、Cuiden、Medline 和 Scopus 数据库,使用搜索公式“Machine learning AND triage AND emergency”进行了系统评价。
确定了 11 项研究。这些研究表明,与紧急严重指数或其他量表相比,ML 方法一致地预测了重要的结局,如死亡率、重症监护结局和入院以及住院需求。在所考虑的 ML 模型中,XGBoost 和深度神经网络获得了最高的预测准确性水平,而逻辑回归获得的准确性最差。
机器学习方法可以成为帮助分诊过程的有效工具,用于预测死亡率或需要重症监护或住院等重要的紧急变量。